mradermacher's picture
auto-patch README.md
c799d5e verified
|
raw
history blame
4.77 kB
metadata
base_model: internlm/internlm2-20b
datasets:
  - ai2_arc
  - allenai/ultrafeedback_binarized_cleaned
  - argilla/distilabel-intel-orca-dpo-pairs
  - jondurbin/airoboros-3.2
  - codeparrot/apps
  - facebook/belebele
  - bluemoon-fandom-1-1-rp-cleaned
  - boolq
  - camel-ai/biology
  - camel-ai/chemistry
  - camel-ai/math
  - camel-ai/physics
  - jondurbin/contextual-dpo-v0.1
  - jondurbin/gutenberg-dpo-v0.1
  - jondurbin/py-dpo-v0.1
  - jondurbin/truthy-dpo-v0.1
  - LDJnr/Capybara
  - jondurbin/cinematika-v0.1
  - WizardLM/WizardLM_evol_instruct_70k
  - glaiveai/glaive-function-calling-v2
  - jondurbin/gutenberg-dpo-v0.1
  - grimulkan/LimaRP-augmented
  - lmsys/lmsys-chat-1m
  - ParisNeo/lollms_aware_dataset
  - TIGER-Lab/MathInstruct
  - Muennighoff/natural-instructions
  - openbookqa
  - kingbri/PIPPA-shareGPT
  - piqa
  - Vezora/Tested-22k-Python-Alpaca
  - ropes
  - cakiki/rosetta-code
  - Open-Orca/SlimOrca
  - b-mc2/sql-create-context
  - squad_v2
  - mattpscott/airoboros-summarization
  - migtissera/Synthia-v1.3
  - unalignment/toxic-dpo-v0.2
  - WhiteRabbitNeo/WRN-Chapter-1
  - WhiteRabbitNeo/WRN-Chapter-2
  - winogrande
exported_from: jondurbin/bagel-dpo-20b-v04
language:
  - en
library_name: transformers
license: other
license_link: https://huggingface.co/internlm/internlm2-20b#open-source-license
license_name: internlm2-20b
quantized_by: mradermacher

About

weighted/imatrix quants of https://huggingface.co/jondurbin/bagel-dpo-20b-v04

static quants are available at https://huggingface.co/mradermacher/bagel-dpo-20b-v04-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF i1-IQ2_M 7.8
GGUF i1-Q2_K 8.3 IQ3_XXS probably better
GGUF i1-IQ3_XXS 8.7 lower quality
GGUF i1-IQ3_XS 9.1
GGUF i1-Q3_K_S 9.5 IQ3_XS probably better
GGUF i1-IQ3_S 9.6 beats Q3_K*
GGUF i1-Q3_K_M 10.5 IQ3_S probably better
GGUF i1-Q3_K_L 11.3 IQ3_M probably better
GGUF i1-IQ4_XS 11.5
GGUF i1-Q4_0 12.1 fast, low quality
GGUF i1-Q4_K_S 12.2 optimal size/speed/quality
GGUF i1-Q4_K_M 12.8 fast, recommended
GGUF i1-Q5_K_S 14.5
GGUF i1-Q5_K_M 14.8
GGUF i1-Q6_K 17.1 practically like static Q6_K

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.