mradermacher's picture
auto-patch README.md
0230ff5 verified
|
raw
history blame
4.38 kB
---
arxiv:
- arxiv.org/abs/2403.03218
base_model: cais/Yi-34B-Chat_RMU
datasets:
- cais/wmdp
- cais/wmdp-corpora
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/cais/Yi-34B-Chat_RMU
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ1_M.gguf) | i1-IQ1_M | 8.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.4 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ2_S.gguf) | i1-IQ2_S | 11.0 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ2_M.gguf) | i1-IQ2_M | 11.9 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q2_K_S.gguf) | i1-Q2_K_S | 12.0 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q2_K.gguf) | i1-Q2_K | 12.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q3_K_S.gguf) | i1-Q3_K_S | 15.1 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ3_M.gguf) | i1-IQ3_M | 15.7 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q3_K_L.gguf) | i1-Q3_K_L | 18.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-IQ4_XS.gguf) | i1-IQ4_XS | 18.6 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q4_K_S.gguf) | i1-Q4_K_S | 19.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q5_K_S.gguf) | i1-Q5_K_S | 23.8 | |
| [GGUF](https://huggingface.co/mradermacher/Yi-34B-Chat_RMU-i1-GGUF/resolve/main/Yi-34B-Chat_RMU.i1-Q6_K.gguf) | i1-Q6_K | 28.3 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->