|
--- |
|
base_model: mistralai/Mistral-Large-Instruct-2407 |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- it |
|
- pt |
|
- zh |
|
- ja |
|
- ru |
|
- ko |
|
library_name: transformers |
|
license: other |
|
license_link: https://mistral.ai/licenses/MRL-0.1.md |
|
license_name: mrl |
|
quantized_by: mradermacher |
|
--- |
|
## About |
|
|
|
<!-- ### quantize_version: 2 --> |
|
<!-- ### output_tensor_quantised: 1 --> |
|
<!-- ### convert_type: hf --> |
|
<!-- ### vocab_type: --> |
|
<!-- ### tags: --> |
|
static quants of https://huggingface.co/mistralai/Mistral-Large-Instruct-2407 |
|
|
|
<!-- provided-files --> |
|
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. |
|
## Usage |
|
|
|
If you are unsure how to use GGUF files, refer to one of [TheBloke's |
|
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for |
|
more details, including on how to concatenate multi-part files. |
|
|
|
## Provided Quants |
|
|
|
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) |
|
|
|
| Link | Type | Size/GB | Notes | |
|
|:-----|:-----|--------:|:------| |
|
| [PART 1](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.IQ3_S.gguf.part2of2) | IQ3_S | 53.1 | beats Q3_K* | |
|
| [PART 1](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.IQ3_M.gguf.part2of2) | IQ3_M | 55.4 | | |
|
| [PART 1](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.Q4_K_S.gguf.part2of2) | Q4_K_S | 69.7 | fast, recommended | |
|
| [PART 1](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Mistral-Large-Instruct-2407-GGUF/resolve/main/Mistral-Large-Instruct-2407.Q8_0.gguf.part3of3) | Q8_0 | 130.4 | fast, best quality | |
|
|
|
Here is a handy graph by ikawrakow comparing some lower-quality quant |
|
types (lower is better): |
|
|
|
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) |
|
|
|
And here are Artefact2's thoughts on the matter: |
|
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 |
|
|
|
## FAQ / Model Request |
|
|
|
See https://huggingface.co/mradermacher/model_requests for some answers to |
|
questions you might have and/or if you want some other model quantized. |
|
|
|
## Thanks |
|
|
|
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting |
|
me use its servers and providing upgrades to my workstation to enable |
|
this work in my free time. |
|
|
|
<!-- end --> |
|
|