mradermacher's picture
auto-patch README.md
dcfde25 verified
---
base_model: moreh/Llama-3-Motif-102B
language:
- ko
- en
library_name: transformers
no_imatrix: '/ggml-quants.c:4453: GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k
>= 0) failed'
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/moreh/Llama-3-Motif-102B
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q2_K.gguf) | Q2_K | 38.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_S.gguf) | Q3_K_S | 44.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_M.gguf) | Q3_K_M | 49.4 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q3_K_L.gguf.part2of2) | Q3_K_L | 53.8 | |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.IQ4_XS.gguf.part2of2) | IQ4_XS | 55.3 | |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_S.gguf.part2of2) | Q4_K_S | 58.2 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q4_K_M.gguf.part2of2) | Q4_K_M | 61.4 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_S.gguf.part2of2) | Q5_K_S | 70.4 | |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q5_K_M.gguf.part2of2) | Q5_K_M | 72.3 | |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q6_K.gguf.part2of2) | Q6_K | 83.8 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Llama-3-Motif-102B-GGUF/resolve/main/Llama-3-Motif-102B.Q8_0.gguf.part3of3) | Q8_0 | 108.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->