mradermacher's picture
auto-patch README.md
22134e7 verified
|
raw
history blame
2.97 kB
---
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
---
## About
weighted/imatrix quants of https://huggingface.co/Sao10K/Euryale-1.3-L2-70B
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-IQ2_M.gguf) | i1-IQ2_M | 23.7 | |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q2_K.gguf) | i1-Q2_K | 25.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.0 | fast, lower quality |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.6 | |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-IQ3_S.gguf) | i1-IQ3_S | 30.3 | fast, beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.3 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-IQ3_M.gguf) | i1-IQ3_M | 31.4 | |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.7 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.6 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.7 | almost as good as Q4_K_M |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.8 | fast, medium quality |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.9 | |
| [GGUF](https://huggingface.co/mradermacher/Euryale-1.3-L2-70B-i1-GGUF/resolve/main/Euryale-1.3-L2-70B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 49.2 | best weighted quant |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
<!-- end -->