anton-l's picture
anton-l HF staff
Upload README.md
850a743
|
raw
history blame
3.4 kB
metadata
license: apache-2.0
language: tr
tags:
  - automatic-speech-recognition
  - common_voice
  - tr
  - robust-speech-event
datasets:
  - common_voice
model-index:
  - name: mpoyraz/wav2vec2-xls-r-300m-cv6-turkish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 6.1
          type: common_voice
          args: tr
        metrics:
          - name: Test WER
            type: wer
            value: 8.83
          - name: Test CER
            type: cer
            value: 2.37
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: tr
        metrics:
          - name: Test WER
            type: wer
            value: 32.81
          - name: Test CER
            type: cer
            value: 11.22
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: tr
        metrics:
          - name: Test WER
            type: wer
            value: 34.86

wav2vec2-xls-r-300m-cv6-turkish

Model description

This ASR model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on Turkish language.

Training and evaluation data

The following datasets were used for finetuning:

Training procedure

To support both of the datasets above, custom pre-processing and loading steps was performed and wav2vec2-turkish repo was used for that purpose.

Training hyperparameters

The following hypermaters were used for finetuning:

  • learning_rate 2e-4
  • num_train_epochs 10
  • warmup_steps 500
  • freeze_feature_extractor
  • mask_time_prob 0.1
  • mask_feature_prob 0.1
  • feat_proj_dropout 0.05
  • attention_dropout 0.05
  • final_dropout 0.1
  • activation_dropout 0.05
  • per_device_train_batch_size 8
  • per_device_eval_batch_size 8
  • gradient_accumulation_steps 8

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1
  • Datasets 1.18.3
  • Tokenizers 0.10.3

Language Model

N-gram language model is trained on a Turkish Wikipedia articles using KenLM and ngram-lm-wiki repo was used to generate arpa LM and convert it into binary format.

Evaluation Commands

Please install unicode_tr package before running evaluation. It is used for Turkish text processing.

  1. To evaluate on common_voice with split test
python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset common_voice --config tr --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Evaluation results:

Dataset WER CER
Common Voice 6.1 TR test split 8.83 2.37
Speech Recognition Community dev data 32.81 11.22