metadata
library_name: transformers
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/sroie
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-sroie
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/sroie
type: mp-02/sroie
metrics:
- name: Precision
type: precision
value: 0.9265995453069178
- name: Recall
type: recall
value: 0.9459549071618037
- name: F1
type: f1
value: 0.936177194421657
- name: Accuracy
type: accuracy
value: 0.9808185454918453
layoutlmv3-finetuned-sroie
This model is a fine-tuned version of layoutlmv3 on the mp-02/sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0717
- Precision: 0.9266
- Recall: 0.9460
- F1: 0.9362
- Accuracy: 0.9808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 2.3810 | 250 | 0.1477 | 0.8827 | 0.8654 | 0.8739 | 0.9628 |
0.3014 | 4.7619 | 500 | 0.0899 | 0.9138 | 0.9274 | 0.9205 | 0.9759 |
0.3014 | 7.1429 | 750 | 0.0765 | 0.9257 | 0.9377 | 0.9316 | 0.9795 |
0.0669 | 9.5238 | 1000 | 0.0717 | 0.9266 | 0.9460 | 0.9362 | 0.9808 |
0.0669 | 11.9048 | 1250 | 0.0713 | 0.9216 | 0.9476 | 0.9344 | 0.9803 |
0.0562 | 14.2857 | 1500 | 0.0712 | 0.9203 | 0.9493 | 0.9346 | 0.9803 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1