metadata
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9461305007587253
- name: Recall
type: recall
value: 0.968167701863354
- name: F1
type: f1
value: 0.9570222563315426
- name: Accuracy
type: accuracy
value: 0.9592529711375212
layoutlmv3-finetuned-cord
This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.2268
- Precision: 0.9461
- Recall: 0.9682
- F1: 0.9570
- Accuracy: 0.9593
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.5249 | 6.25 | 500 | 0.6825 | 0.8146 | 0.8595 | 0.8364 | 0.8434 |
0.5103 | 12.5 | 1000 | 0.3562 | 0.9058 | 0.9410 | 0.9231 | 0.9312 |
0.2872 | 18.75 | 1500 | 0.2750 | 0.9337 | 0.9620 | 0.9476 | 0.9508 |
0.2008 | 25.0 | 2000 | 0.2383 | 0.9483 | 0.9689 | 0.9585 | 0.9576 |
0.1611 | 31.25 | 2500 | 0.2268 | 0.9461 | 0.9682 | 0.9570 | 0.9593 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1