|
'''MobileNetV3 in PyTorch. |
|
|
|
See the paper "Inverted Residuals and Linear Bottlenecks: |
|
Mobile Networks for Classification, Detection and Segmentation" for more details. |
|
''' |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import init |
|
|
|
|
|
|
|
class hswish(nn.Module): |
|
def forward(self, x): |
|
out = x * F.relu6(x + 3, inplace=True) / 6 |
|
return out |
|
|
|
|
|
class hsigmoid(nn.Module): |
|
def forward(self, x): |
|
out = F.relu6(x + 3, inplace=True) / 6 |
|
return out |
|
|
|
|
|
class SeModule(nn.Module): |
|
def __init__(self, in_size, reduction=4): |
|
super(SeModule, self).__init__() |
|
expand_size = max(in_size // reduction, 8) |
|
self.se = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_size, expand_size, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(expand_size), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(expand_size, in_size, kernel_size=1, bias=False), |
|
nn.Hardsigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
return x * self.se(x) |
|
|
|
|
|
class Block(nn.Module): |
|
'''expand + depthwise + pointwise''' |
|
def __init__(self, kernel_size, in_size, expand_size, out_size, act, se, stride): |
|
super(Block, self).__init__() |
|
self.stride = stride |
|
|
|
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(expand_size) |
|
self.act1 = act(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False) |
|
self.bn2 = nn.BatchNorm2d(expand_size) |
|
self.act2 = act(inplace=True) |
|
self.se = SeModule(expand_size) if se else nn.Identity() |
|
|
|
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(out_size) |
|
self.act3 = act(inplace=True) |
|
|
|
self.skip = None |
|
if stride == 1 and in_size != out_size: |
|
self.skip = nn.Sequential( |
|
nn.Conv2d(in_size, out_size, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_size) |
|
) |
|
|
|
if stride == 2 and in_size != out_size: |
|
self.skip = nn.Sequential( |
|
nn.Conv2d(in_channels=in_size, out_channels=in_size, kernel_size=3, groups=in_size, stride=2, padding=1, bias=False), |
|
nn.BatchNorm2d(in_size), |
|
nn.Conv2d(in_size, out_size, kernel_size=1, bias=True), |
|
nn.BatchNorm2d(out_size) |
|
) |
|
|
|
if stride == 2 and in_size == out_size: |
|
self.skip = nn.Sequential( |
|
nn.Conv2d(in_channels=in_size, out_channels=out_size, kernel_size=3, groups=in_size, stride=2, padding=1, bias=False), |
|
nn.BatchNorm2d(out_size) |
|
) |
|
|
|
def forward(self, x): |
|
skip = x |
|
|
|
out = self.act1(self.bn1(self.conv1(x))) |
|
out = self.act2(self.bn2(self.conv2(out))) |
|
out = self.se(out) |
|
out = self.bn3(self.conv3(out)) |
|
|
|
if self.skip is not None: |
|
skip = self.skip(skip) |
|
return self.act3(out + skip) |
|
|
|
|
|
|
|
class MobileNetV3_Small(nn.Module): |
|
def __init__(self, num_classes=1000, act=nn.Hardswish): |
|
super(MobileNetV3_Small, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(16) |
|
self.hs1 = act(inplace=True) |
|
|
|
self.bneck = nn.Sequential( |
|
Block(3, 16, 16, 16, nn.ReLU, True, 2), |
|
Block(3, 16, 72, 24, nn.ReLU, False, 2), |
|
Block(3, 24, 88, 24, nn.ReLU, False, 1), |
|
Block(5, 24, 96, 40, act, True, 2), |
|
Block(5, 40, 240, 40, act, True, 1), |
|
Block(5, 40, 240, 40, act, True, 1), |
|
Block(5, 40, 120, 48, act, True, 1), |
|
Block(5, 48, 144, 48, act, True, 1), |
|
Block(5, 48, 288, 96, act, True, 2), |
|
Block(5, 96, 576, 96, act, True, 1), |
|
Block(5, 96, 576, 96, act, True, 1), |
|
) |
|
|
|
|
|
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(576) |
|
self.hs2 = act(inplace=True) |
|
self.gap = nn.AdaptiveAvgPool2d(1) |
|
|
|
self.linear3 = nn.Linear(576, 1280, bias=False) |
|
self.bn3 = nn.BatchNorm1d(1280) |
|
self.hs3 = act(inplace=True) |
|
self.drop = nn.Dropout(0.2) |
|
self.linear4 = nn.Linear(1280, num_classes) |
|
self.init_params() |
|
|
|
def init_params(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, mode='fan_out') |
|
if m.bias is not None: |
|
init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
init.normal_(m.weight, std=0.001) |
|
if m.bias is not None: |
|
init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
out = self.hs1(self.bn1(self.conv1(x))) |
|
out = self.bneck(out) |
|
|
|
out = self.hs2(self.bn2(self.conv2(out))) |
|
out = self.gap(out).flatten(1) |
|
out = self.drop(self.hs3(self.bn3(self.linear3(out)))) |
|
|
|
return self.linear4(out) |
|
|
|
|
|
class MobileNetV3_Large(nn.Module): |
|
def __init__(self, num_classes=1000, act=nn.Hardswish): |
|
super(MobileNetV3_Large, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(16) |
|
self.hs1 = act(inplace=True) |
|
|
|
self.bneck = nn.Sequential( |
|
Block(3, 16, 16, 16, nn.ReLU, False, 1), |
|
Block(3, 16, 64, 24, nn.ReLU, False, 2), |
|
Block(3, 24, 72, 24, nn.ReLU, False, 1), |
|
Block(5, 24, 72, 40, nn.ReLU, True, 2), |
|
Block(5, 40, 120, 40, nn.ReLU, True, 1), |
|
Block(5, 40, 120, 40, nn.ReLU, True, 1), |
|
Block(3, 40, 240, 80, act, False, 2), |
|
Block(3, 80, 200, 80, act, False, 1), |
|
Block(3, 80, 184, 80, act, False, 1), |
|
Block(3, 80, 184, 80, act, False, 1), |
|
Block(3, 80, 480, 112, act, True, 1), |
|
Block(3, 112, 672, 112, act, True, 1), |
|
Block(5, 112, 672, 160, act, True, 2), |
|
Block(5, 160, 672, 160, act, True, 1), |
|
Block(5, 160, 960, 160, act, True, 1), |
|
) |
|
|
|
|
|
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(960) |
|
self.hs2 = act(inplace=True) |
|
self.gap = nn.AdaptiveAvgPool2d(1) |
|
|
|
self.linear3 = nn.Linear(960, 1280, bias=False) |
|
self.bn3 = nn.BatchNorm1d(1280) |
|
self.hs3 = act(inplace=True) |
|
self.drop = nn.Dropout(0.2) |
|
|
|
self.linear4 = nn.Linear(1280, num_classes) |
|
self.init_params() |
|
|
|
def init_params(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight, mode='fan_out') |
|
if m.bias is not None: |
|
init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
init.constant_(m.weight, 1) |
|
init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
init.normal_(m.weight, std=0.001) |
|
if m.bias is not None: |
|
init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
out = self.hs1(self.bn1(self.conv1(x))) |
|
out = self.bneck(out) |
|
|
|
out = self.hs2(self.bn2(self.conv2(out))) |
|
out = self.gap(out).flatten(1) |
|
out = self.drop(self.hs3(self.bn3(self.linear3(out)))) |
|
|
|
return self.linear4(out) |
|
|