testing / hyperparams.yaml
moumeneb1's picture
Create hyperparams.yaml
98738d4
raw
history blame
4.49 kB
# ############################################################################
# Model: E2E ASR with attention-based ASR
# Encoder: CRDNN model
# Decoder: GRU + beamsearch + RNNLM
# Tokens: BPE with unigram
# Authors: Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga 2020
# ############################################################################
# Feature parameters
sample_rate: 16000
n_fft: 400
n_mels: 40
# Model parameters
activation: !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 2
cnn_channels: (128, 256)
inter_layer_pooling_size: (2, 2)
cnn_kernelsize: (3, 3)
time_pooling_size: 4
rnn_class: !name:speechbrain.nnet.RNN.LSTM
rnn_layers: 4
rnn_neurons: 1024
rnn_bidirectional: True
dnn_blocks: 2
dnn_neurons: 512
emb_size: 128
dec_neurons: 1024
output_neurons: 1000 # index(blank/eos/bos) = 0
blank_index: 0
# Decoding parameters
bos_index: 0
eos_index: 0
min_decode_ratio: 0.0
max_decode_ratio: 1.0
beam_size: 80
eos_threshold: 1.5
using_max_attn_shift: True
max_attn_shift: 240
lm_weight: 0.50
coverage_penalty: 1.5
temperature: 1.25
temperature_lm: 1.25
normalizer: !new:speechbrain.processing.features.InputNormalization
norm_type: global
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
input_shape: [null, null, !ref <n_mels>]
activation: !ref <activation>
dropout: !ref <dropout>
cnn_blocks: !ref <cnn_blocks>
cnn_channels: !ref <cnn_channels>
cnn_kernelsize: !ref <cnn_kernelsize>
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
time_pooling: True
using_2d_pooling: False
time_pooling_size: !ref <time_pooling_size>
rnn_class: !ref <rnn_class>
rnn_layers: !ref <rnn_layers>
rnn_neurons: !ref <rnn_neurons>
rnn_bidirectional: !ref <rnn_bidirectional>
rnn_re_init: True
dnn_blocks: !ref <dnn_blocks>
dnn_neurons: !ref <dnn_neurons>
emb: !new:speechbrain.nnet.embedding.Embedding
num_embeddings: !ref <output_neurons>
embedding_dim: !ref <emb_size>
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
enc_dim: !ref <dnn_neurons>
input_size: !ref <emb_size>
rnn_type: gru
attn_type: location
hidden_size: !ref <dec_neurons>
attn_dim: 1024
num_layers: 1
scaling: 1.0
channels: 10
kernel_size: 100
re_init: True
dropout: !ref <dropout>
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dnn_neurons>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <dec_neurons>
n_neurons: !ref <output_neurons>
log_softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: True
lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM
output_neurons: !ref <output_neurons>
embedding_dim: !ref <emb_size>
activation: !name:torch.nn.LeakyReLU
dropout: 0.0
rnn_layers: 2
rnn_neurons: 2048
dnn_blocks: 1
dnn_neurons: 512
return_hidden: True # For inference
tokenizer: !new:sentencepiece.SentencePieceProcessor
asr_model: !new:torch.nn.ModuleList
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
# We compose the inference (encoder) pipeline.
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
input_shape: [null, null, !ref <n_mels>]
compute_features: !ref <compute_features>
normalize: !ref <normalizer>
model: !ref <enc>
decoder: !new:speechbrain.decoders.S2SRNNBeamSearchLM
embedding: !ref <emb>
decoder: !ref <dec>
linear: !ref <seq_lin>
language_model: !ref <lm_model>
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <beam_size>
eos_threshold: !ref <eos_threshold>
using_max_attn_shift: !ref <using_max_attn_shift>
max_attn_shift: !ref <max_attn_shift>
coverage_penalty: !ref <coverage_penalty>
lm_weight: !ref <lm_weight>
temperature: !ref <temperature>
temperature_lm: !ref <temperature_lm>
modules:
normalizer: !ref <normalizer>
encoder: !ref <encoder>
decoder: !ref <decoder>
lm_model: !ref <lm_model>
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
normalizer: !ref <normalizer>
asr: !ref <asr_model>
lm: !ref <lm_model>
tokenizer: !ref <tokenizer>