metadata
license: other
base_model: nvidia/segformer-b0-finetuned-ade-512-512
tags:
- vision
- image-segmentation
- generated_from_trainer
metrics:
- precision
model-index:
- name: segformer-b0-finetuned-segments-pv
results: []
segformer-b0-finetuned-segments-pv
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test dataset. It achieves the following results on the evaluation set:
- Loss: 0.0224
- Mean Iou: 0.8462
- Precision: 0.9229
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
---|---|---|---|---|---|
0.0043 | 1.0 | 3666 | 0.0095 | 0.7784 | 0.8863 |
0.0036 | 2.0 | 7332 | 0.0082 | 0.8127 | 0.8991 |
0.0004 | 3.0 | 10998 | 0.0085 | 0.7946 | 0.8844 |
0.0 | 4.0 | 14664 | 0.0082 | 0.8313 | 0.9130 |
0.0 | 5.0 | 18330 | 0.0089 | 0.8147 | 0.9092 |
0.002 | 6.0 | 21996 | 0.0117 | 0.8121 | 0.9275 |
0.0017 | 7.0 | 25662 | 0.0105 | 0.7984 | 0.8629 |
0.0 | 8.0 | 29328 | 0.0108 | 0.8169 | 0.8889 |
0.0029 | 9.0 | 32994 | 0.0133 | 0.8224 | 0.9096 |
0.006 | 10.0 | 36660 | 0.0106 | 0.8280 | 0.8829 |
0.026 | 11.0 | 40326 | 0.0102 | 0.8501 | 0.9210 |
0.0 | 12.0 | 43992 | 0.0118 | 0.8339 | 0.9022 |
0.0019 | 13.0 | 47658 | 0.0139 | 0.8360 | 0.9103 |
0.0018 | 14.0 | 51324 | 0.0140 | 0.8332 | 0.9161 |
0.0039 | 15.0 | 54990 | 0.0129 | 0.8297 | 0.9012 |
0.0025 | 16.0 | 58656 | 0.0166 | 0.8368 | 0.9030 |
0.0073 | 17.0 | 62322 | 0.0148 | 0.8334 | 0.8950 |
0.0017 | 18.0 | 65988 | 0.0157 | 0.8451 | 0.9166 |
0.0 | 19.0 | 69654 | 0.0184 | 0.8129 | 0.9161 |
0.0013 | 20.0 | 73320 | 0.0162 | 0.8333 | 0.9042 |
0.0014 | 21.0 | 76986 | 0.0167 | 0.8470 | 0.9178 |
0.0015 | 22.0 | 80652 | 0.0147 | 0.8429 | 0.9114 |
0.0015 | 23.0 | 84318 | 0.0149 | 0.8458 | 0.8978 |
0.0009 | 24.0 | 87984 | 0.0158 | 0.8416 | 0.9072 |
0.0014 | 25.0 | 91650 | 0.0144 | 0.8457 | 0.9185 |
0.0013 | 26.0 | 95316 | 0.0164 | 0.8482 | 0.9212 |
0.0043 | 27.0 | 98982 | 0.0162 | 0.8400 | 0.9005 |
0.0024 | 28.0 | 102648 | 0.0203 | 0.8468 | 0.9217 |
0.0 | 29.0 | 106314 | 0.0192 | 0.8431 | 0.9142 |
0.0 | 30.0 | 109980 | 0.0181 | 0.8477 | 0.9203 |
0.0 | 31.0 | 113646 | 0.0179 | 0.8484 | 0.9177 |
0.001 | 32.0 | 117312 | 0.0170 | 0.8485 | 0.9104 |
0.0007 | 33.0 | 120978 | 0.0184 | 0.8471 | 0.9113 |
0.0013 | 34.0 | 124644 | 0.0193 | 0.8487 | 0.9209 |
0.0016 | 35.0 | 128310 | 0.0169 | 0.8491 | 0.9182 |
0.0005 | 36.0 | 131976 | 0.0180 | 0.8476 | 0.9167 |
0.0016 | 37.0 | 135642 | 0.0212 | 0.8478 | 0.9239 |
0.0014 | 38.0 | 139308 | 0.0211 | 0.8455 | 0.9164 |
0.0 | 39.0 | 142974 | 0.0203 | 0.8468 | 0.9211 |
0.0 | 40.0 | 146640 | 0.0224 | 0.8462 | 0.9229 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1