Upload README.md
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's ba
|
|
23 |
|
24 |
## Training Data
|
25 |
|
26 |
-
|
27 |
|
28 |
## Evaluation Data
|
29 |
|
@@ -31,7 +31,7 @@ We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-S
|
|
31 |
|
32 |
## Training Procedure
|
33 |
|
34 |
-
DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We
|
35 |
|
36 |
## Intended Use and Limitations
|
37 |
|
@@ -45,8 +45,8 @@ Example 1:
|
|
45 |
```python
|
46 |
import torch
|
47 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/
|
49 |
-
model = AutoModelForCausalLM.from_pretrained("motherduckdb/
|
50 |
|
51 |
text = """### Instruction:
|
52 |
Your task is to generate valid duckdb SQL to answer the following question.
|
@@ -70,8 +70,8 @@ Example 2:
|
|
70 |
```python
|
71 |
import torch
|
72 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/
|
74 |
-
model = AutoModelForCausalLM.from_pretrained("motherduckdb/
|
75 |
|
76 |
text = """### Instruction:
|
77 |
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
|
@@ -108,8 +108,8 @@ Example 3:
|
|
108 |
```python
|
109 |
import torch
|
110 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
111 |
-
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/
|
112 |
-
model = AutoModelForCausalLM.from_pretrained("motherduckdb/
|
113 |
|
114 |
text = """### Instruction:
|
115 |
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
|
|
|
23 |
|
24 |
## Training Data
|
25 |
|
26 |
+
200k synthetically generated text-to-SQL training data pairs, using Mixtral 7B Instruct V1, guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were transpiled to DuckDB SQL using [sqlglot](https://github.com/tobymao/sqlglot).
|
27 |
|
28 |
## Evaluation Data
|
29 |
|
|
|
31 |
|
32 |
## Training Procedure
|
33 |
|
34 |
+
DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs.
|
35 |
|
36 |
## Intended Use and Limitations
|
37 |
|
|
|
45 |
```python
|
46 |
import torch
|
47 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16)
|
50 |
|
51 |
text = """### Instruction:
|
52 |
Your task is to generate valid duckdb SQL to answer the following question.
|
|
|
70 |
```python
|
71 |
import torch
|
72 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16)
|
75 |
|
76 |
text = """### Instruction:
|
77 |
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
|
|
|
108 |
```python
|
109 |
import torch
|
110 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1")
|
112 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/DuckDB-NSQL-7B-v0.1", torch_dtype=torch.bfloat16)
|
113 |
|
114 |
text = """### Instruction:
|
115 |
Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.
|