metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: whisper_speechcommandsV2_final
results: []
whisper_speechcommandsV2_final
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5364
- Accuracy: 0.9067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 42
- eval_batch_size: 42
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 168
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0374 | 1.0 | 505 | 0.4618 | 0.9014 |
0.0307 | 2.0 | 1010 | 0.4482 | 0.9022 |
0.0312 | 3.0 | 1515 | 0.4575 | 0.9039 |
0.022 | 4.0 | 2021 | 0.5217 | 0.9014 |
0.0227 | 5.0 | 2526 | 0.4511 | 0.9065 |
0.005 | 6.0 | 3031 | 0.5395 | 0.9053 |
0.0016 | 7.0 | 3536 | 0.5289 | 0.9045 |
0.001 | 8.0 | 4042 | 0.5771 | 0.9055 |
0.0002 | 9.0 | 4547 | 0.5407 | 0.9065 |
0.0001 | 10.0 | 5050 | 0.5364 | 0.9067 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1