Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,24 @@
|
|
1 |
---
|
2 |
license: llama2
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
---
|
4 |
+
```
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("monuminu/indo-instruct-llama2-32k")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
"monuminu/indo-instruct-llama2-32k",
|
11 |
+
device_map="auto",
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
load_in_8bit=True,
|
14 |
+
rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
|
15 |
+
)
|
16 |
+
|
17 |
+
prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
19 |
+
del inputs["token_type_ids"]
|
20 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
21 |
+
|
22 |
+
output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
|
23 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
24 |
+
```
|