metadata
license: apache-2.0
library_name: peft
tags:
- code
- instruct
- zephyr
datasets:
- HuggingFaceH4/no_robots
base_model: HuggingFaceH4/zephyr-7b-alpha
model-index:
- name: zephyr_7b_norobots
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 56.48
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/zephyr_7b_norobots
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 79.64
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/zephyr_7b_norobots
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.52
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/zephyr_7b_norobots
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.6
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/zephyr_7b_norobots
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/zephyr_7b_norobots
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.62
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/zephyr_7b_norobots
name: Open LLM Leaderboard
Finetuning Overview:
Model Used: HuggingFaceH4/zephyr-7b-alpha
Dataset: HuggingFaceH4/no_robots
Dataset Insights:
No Robots is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
Finetuning Details:
With the utilization of MonsterAPI's LLM finetuner, this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 36mins 47secs for 1 epoch using an A6000 48GB GPU.
- Costed
$1.212
for the entire epoch.
Hyperparameters & Additional Details:
- Epochs: 1
- Cost Per Epoch: $1.212
- Total Finetuning Cost: $1.212
- Model Path: HuggingFaceH4/zephyr-7b-alpha
- Learning Rate: 0.0002
- Data Split: 100% train
- Gradient Accumulation Steps: 4
- lora r: 32
- lora alpha: 64
Prompt Structure
<|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
Train loss :
license: apache-2.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 55.16 |
AI2 Reasoning Challenge (25-Shot) | 56.48 |
HellaSwag (10-Shot) | 79.64 |
MMLU (5-Shot) | 55.52 |
TruthfulQA (0-shot) | 44.60 |
Winogrande (5-shot) | 74.11 |
GSM8k (5-shot) | 20.62 |