metadata
license: apache-2.0
library_name: peft
tags:
- code
- instruct
- mistral
datasets:
- cognitivecomputations/dolphin-coder
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral_7b_DolphinCoder
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.73
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.64
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.87
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.95
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.59
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.23
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder
name: Open LLM Leaderboard
Finetuning Overview:
Model Used: mistralai/Mistral-7B-v0.1
Dataset: cognitivecomputations/dolphin-coder
Dataset Insights:
Dolphin-Coder dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks.
Finetuning Details:
With the utilization of MonsterAPI's no-code LLM finetuner, this finetuning:
- Was achieved with great cost-effectiveness.
- Completed in a total duration of 15hr 36mins for 1 epochs using an A6000 48GB GPU.
- Costed
$31.51
for the entire 1 epoch.
Hyperparameters & Additional Details:
- Epochs: 1
- Cost Per Epoch: $31.51
- Model Path: mistralai/Mistral-7B-v0.1
- Learning Rate: 0.0002
- Data Split: 100% train
- Gradient Accumulation Steps: 128
- lora r: 32
- lora alpha: 64
license: apache-2.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 57.67 |
AI2 Reasoning Challenge (25-Shot) | 59.73 |
HellaSwag (10-Shot) | 81.64 |
MMLU (5-Shot) | 59.87 |
TruthfulQA (0-shot) | 43.95 |
Winogrande (5-shot) | 74.59 |
GSM8k (5-shot) | 26.23 |