monai
medical
katielink commited on
Commit
03bfead
·
1 Parent(s): 76a9414

update deterministic training results

Browse files
README.md CHANGED
@@ -43,13 +43,13 @@ Two channels
43
  - Label 0: everything else
44
 
45
  ## Performance
46
- Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.959.
47
 
48
  #### Training Loss
49
- ![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_spleen_ct_segmentation_train_3.png)
50
 
51
  #### Validation Dice
52
- ![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_spleen_ct_segmentation_val_3.png)
53
 
54
  #### TensorRT speedup
55
  The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
 
43
  - Label 0: everything else
44
 
45
  ## Performance
46
+ Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.961.
47
 
48
  #### Training Loss
49
+ ![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_train.png)
50
 
51
  #### Validation Dice
52
+ ![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_val.png)
53
 
54
  #### TensorRT speedup
55
  The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
configs/evaluate.json CHANGED
@@ -72,9 +72,6 @@
72
  "summary_ops": "*"
73
  }
74
  ],
75
- "initialize": [
76
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
77
- ],
78
  "run": [
79
  "$@validate#evaluator.run()"
80
  ]
 
72
  "summary_ops": "*"
73
  }
74
  ],
 
 
 
75
  "run": [
76
  "$@validate#evaluator.run()"
77
  ]
configs/inference.json CHANGED
@@ -147,7 +147,7 @@
147
  "amp": true
148
  },
149
  "initialize": [
150
- "$setattr(torch.backends.cudnn, 'benchmark', True)"
151
  ],
152
  "run": [
153
  "$@evaluator.run()"
 
147
  "amp": true
148
  },
149
  "initialize": [
150
+ "$monai.utils.set_determinism(seed=123)"
151
  ],
152
  "run": [
153
  "$@evaluator.run()"
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.7",
4
  "changelog": {
 
5
  "0.4.7": "update the TensorRT part in the README file",
6
  "0.4.6": "fix mgpu finalize issue",
7
  "0.4.5": "enable deterministic training",
@@ -43,7 +44,7 @@
43
  "label_classes": "single channel data, 1 is spleen, 0 is everything else",
44
  "pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
45
  "eval_metrics": {
46
- "mean_dice": 0.959
47
  },
48
  "intended_use": "This is an example, not to be used for diagnostic purposes",
49
  "references": [
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.4.8",
4
  "changelog": {
5
+ "0.4.8": "update deterministic training results",
6
  "0.4.7": "update the TensorRT part in the README file",
7
  "0.4.6": "fix mgpu finalize issue",
8
  "0.4.5": "enable deterministic training",
 
44
  "label_classes": "single channel data, 1 is spleen, 0 is everything else",
45
  "pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
46
  "eval_metrics": {
47
+ "mean_dice": 0.961
48
  },
49
  "intended_use": "This is an example, not to be used for diagnostic purposes",
50
  "references": [
docs/README.md CHANGED
@@ -36,13 +36,13 @@ Two channels
36
  - Label 0: everything else
37
 
38
  ## Performance
39
- Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.959.
40
 
41
  #### Training Loss
42
- ![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_spleen_ct_segmentation_train_3.png)
43
 
44
  #### Validation Dice
45
- ![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_spleen_ct_segmentation_val_3.png)
46
 
47
  #### TensorRT speedup
48
  The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
 
36
  - Label 0: everything else
37
 
38
  ## Performance
39
+ Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.961.
40
 
41
  #### Training Loss
42
+ ![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_train.png)
43
 
44
  #### Validation Dice
45
+ ![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_val.png)
46
 
47
  #### TensorRT speedup
48
  The `spleen_ct_segmentation` bundle supports the TensorRT acceleration. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
models/model.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:57801867b520d353b6b8fa93a511ad4b3050659872255361fcfc5d5b77320692
3
  size 19297197
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:502c312893994ec071a85c4f2e7d83a43f7789969faa73dae62f1291177f50fe
3
  size 19297197
models/model.ts CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f325fbb60833b0946e234ab14590bde652223503d41f445da879f0396f08a21a
3
- size 19411907
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8d7b04a24b1a6016aa32c662913b907dab4fb91cd88a91cb7e0a8f11eeafec0
3
+ size 19412163