|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Sequence, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from monai.utils import optional_import |
|
|
|
Rearrange, _ = optional_import("einops.layers.torch", name="Rearrange") |
|
|
|
|
|
class PatchEmbeddingBlock(nn.Module): |
|
""" |
|
A patch embedding block, based on: "Dosovitskiy et al., |
|
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>" |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
img_size: Tuple[int, int, int], |
|
patch_size: Tuple[int, int, int], |
|
hidden_size: int, |
|
num_heads: int, |
|
pos_embed: str, |
|
dropout_rate: float = 0.0, |
|
) -> None: |
|
""" |
|
Args: |
|
in_channels: dimension of input channels. |
|
img_size: dimension of input image. |
|
patch_size: dimension of patch size. |
|
hidden_size: dimension of hidden layer. |
|
num_heads: number of attention heads. |
|
pos_embed: position embedding layer type. |
|
dropout_rate: faction of the input units to drop. |
|
|
|
""" |
|
|
|
super().__init__() |
|
|
|
if not (0 <= dropout_rate <= 1): |
|
raise AssertionError("dropout_rate should be between 0 and 1.") |
|
|
|
if hidden_size % num_heads != 0: |
|
raise AssertionError("hidden size should be divisible by num_heads.") |
|
|
|
for m, p in zip(img_size, patch_size): |
|
if m < p: |
|
raise AssertionError("patch_size should be smaller than img_size.") |
|
|
|
if pos_embed not in ["conv", "perceptron"]: |
|
raise KeyError(f"Position embedding layer of type {pos_embed} is not supported.") |
|
|
|
if pos_embed == "perceptron": |
|
if img_size[0] % patch_size[0] != 0: |
|
raise AssertionError("img_size should be divisible by patch_size for perceptron patch embedding.") |
|
|
|
self.n_patches = ( |
|
(img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) * (img_size[2] // patch_size[2]) |
|
) |
|
self.patch_dim = in_channels * patch_size[0] * patch_size[1] * patch_size[2] |
|
|
|
self.pos_embed = pos_embed |
|
self.patch_embeddings: Union[nn.Conv3d, nn.Sequential] |
|
if self.pos_embed == "conv": |
|
self.patch_embeddings = nn.Conv3d( |
|
in_channels=in_channels, out_channels=hidden_size, kernel_size=patch_size, stride=patch_size |
|
) |
|
elif self.pos_embed == "perceptron": |
|
self.patch_embeddings = nn.Sequential( |
|
Rearrange( |
|
"b c (h p1) (w p2) (d p3)-> b (h w d) (p1 p2 p3 c)", |
|
p1=patch_size[0], |
|
p2=patch_size[1], |
|
p3=patch_size[2], |
|
), |
|
nn.Linear(self.patch_dim, hidden_size), |
|
) |
|
self.position_embeddings = nn.Parameter(torch.zeros(1, self.n_patches, hidden_size)) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.trunc_normal_(self.position_embeddings, mean=0.0, std=0.02, a=-2.0, b=2.0) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
self.trunc_normal_(m.weight, mean=0.0, std=0.02, a=-2.0, b=2.0) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def trunc_normal_(self, tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
with torch.no_grad(): |
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
tensor.erfinv_() |
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
def forward(self, x): |
|
if self.pos_embed == "conv": |
|
x = self.patch_embeddings(x) |
|
x = x.flatten(2) |
|
x = x.transpose(-1, -2) |
|
elif self.pos_embed == "perceptron": |
|
x = self.patch_embeddings(x) |
|
embeddings = x + self.position_embeddings |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class PatchEmbed3D(nn.Module): |
|
"""Video to Patch Embedding. |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: (2,4,4). |
|
in_chans (int): Number of input video channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: Sequence[int] = (96, 96, 96), |
|
patch_size=(4, 4, 4), |
|
in_chans: int = 1, |
|
embed_dim: int = 96, |
|
norm_layer=None, |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1], img_size[2] // patch_size[2]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2] |
|
|
|
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, d, h, w = x.size() |
|
if w % self.patch_size[2] != 0: |
|
x = F.pad(x, (0, self.patch_size[2] - w % self.patch_size[2])) |
|
if h % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[1] - h % self.patch_size[1])) |
|
if d % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - d % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
d, wh, ww = x.size(2), x.size(3), x.size(4) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, d, wh, ww) |
|
|
|
|
|
return x |
|
|