monai
medical
katielink's picture
initialize the model package structure
650e244
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import TYPE_CHECKING, Callable, Optional
import numpy as np
import torch
import torch.distributed
from monai.config import IgniteInfo
from monai.utils import min_version, optional_import
Events, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Events")
make_grid, _ = optional_import("torchvision.utils", name="make_grid")
Image, _ = optional_import("PIL.Image")
ImageDraw, _ = optional_import("PIL.ImageDraw")
if TYPE_CHECKING:
from ignite.engine import Engine
from torch.utils.tensorboard import SummaryWriter
else:
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine")
SummaryWriter, _ = optional_import("torch.utils.tensorboard", name="SummaryWriter")
class TensorBoardImageHandler:
def __init__(
self,
summary_writer: Optional[SummaryWriter] = None,
log_dir: str = "./runs",
tag_name="val",
interval: int = 1,
batch_transform: Callable = lambda x: x,
output_transform: Callable = lambda x: x,
batch_limit=1,
device=None,
) -> None:
self.writer = SummaryWriter(log_dir=log_dir) if summary_writer is None else summary_writer
self.tag_name = tag_name
self.interval = interval
self.batch_transform = batch_transform
self.output_transform = output_transform
self.batch_limit = batch_limit
self.device = device
self.logger = logging.getLogger(__name__)
if torch.distributed.is_initialized():
self.tag_name = f"{self.tag_name}-r{torch.distributed.get_rank()}"
def attach(self, engine: Engine) -> None:
engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.interval), self, "epoch")
def __call__(self, engine: Engine, action) -> None:
epoch = engine.state.epoch
batch_data = self.batch_transform(engine.state.batch)
output_data = self.output_transform(engine.state.output)
self.write_images(batch_data, output_data, epoch)
def write_images(self, batch_data, output_data, epoch):
for bidx in range(len(batch_data)):
image = batch_data[bidx]["image"].detach().cpu().numpy()
y = output_data[bidx]["label"].detach().cpu().numpy()
tag_prefix = f"{self.tag_name} - b{bidx} - " if self.batch_limit != 1 else ""
img_np = image[:3]
img_np[0, :, :] = np.where(y[0] > 0, 1, img_np[0, :, :])
img_tensor = make_grid(torch.from_numpy(img_np), normalize=True)
self.writer.add_image(tag=f"{tag_prefix}Image", img_tensor=img_tensor, global_step=epoch)
y_pred = output_data[bidx]["pred"].detach().cpu().numpy()
cl = np.count_nonzero(y)
cp = np.count_nonzero(y_pred)
self.logger.info(
"{} => {} - Image: {};"
" Label: {} (nz: {});"
" Pred: {} (nz: {});"
" Diff: {:.2f}%;"
" Sig: (pos-nz: {}, neg-nz: {})".format(
self.tag_name,
bidx,
image.shape,
y.shape,
cl,
y_pred.shape,
cp,
100 * (cp - cl) / (cl + 1),
np.count_nonzero(image[3]),
np.count_nonzero(image[4]),
)
)
tag_prefix = f"{self.tag_name} - b{bidx} - " if self.batch_limit != 1 else f"{self.tag_name} - "
label_pred = [y, y_pred, image[3][None] > 0, image[4][None] > 0]
label_pred_tag = f"{tag_prefix}Label vs Pred vs Pos vs Neg"
img_tensor = make_grid(tensor=torch.from_numpy(np.array(label_pred)), nrow=4, normalize=True, pad_value=10)
self.writer.add_image(tag=label_pred_tag, img_tensor=img_tensor, global_step=epoch)
if self.batch_limit == 1 or bidx == (self.batch_limit - 1):
break