|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.1.4", |
|
"changelog": { |
|
"0.1.4": "fix the wrong GPU index issue of multi-node", |
|
"0.1.3": "remove error dollar symbol in readme", |
|
"0.1.2": "add RAM warning", |
|
"0.1.1": "enable deterministic eval and inference", |
|
"0.1.0": "Update deterministic results", |
|
"0.0.9": "Update README Formatting", |
|
"0.0.8": "enable deterministic training", |
|
"0.0.7": "update benchmark on A100", |
|
"0.0.6": "adapt to BundleWorkflow interface", |
|
"0.0.5": "add name tag", |
|
"0.0.4": "Fix evaluation", |
|
"0.0.3": "Update to use MONAI 1.1.0", |
|
"0.0.2": "Update The Torch Vision Transform", |
|
"0.0.1": "initialize the model package structure" |
|
}, |
|
"monai_version": "1.2.0", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"nibabel": "4.0.1", |
|
"pytorch-ignite": "0.4.9", |
|
"torchvision": "0.14.1" |
|
}, |
|
"name": "Pathology nuclei classification", |
|
"task": "Pathology Nuclei classification", |
|
"description": "A pre-trained model for Nuclei Classification within Haematoxylin & Eosin stained histology images", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "consep_dataset.zip from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet", |
|
"data_type": "png", |
|
"image_classes": "RGB channel data, intensity scaled to [0, 1]", |
|
"label_classes": "single channel data", |
|
"pred_classes": "4 channels OneHot data, channel 0 is Other, channel 1 is Inflammatory, channel 2 is Epithelial, channel 3 is Spindle-Shaped", |
|
"eval_metrics": { |
|
"f1_score": 0.852 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. \"HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.\" Medical Image Analysis, Sept. 2019. https://doi.org/10.1016/j.media.2019.101563" |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "magnitude", |
|
"format": "RGB", |
|
"modality": "regular", |
|
"num_channels": 4, |
|
"spatial_shape": [ |
|
128, |
|
128 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "R", |
|
"1": "G", |
|
"2": "B", |
|
"3": "Mask" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "probabilities", |
|
"format": "classes", |
|
"num_channels": 4, |
|
"spatial_shape": [ |
|
1, |
|
4 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1, |
|
2, |
|
3 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "Other", |
|
"1": "Inflammatory", |
|
"2": "Epithelial", |
|
"3": "Spindle-Shaped" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|