enable deterministic training
Browse files- README.md +2 -6
- configs/metadata.json +3 -2
- configs/multi_gpu_train.json +1 -2
- configs/train.json +1 -2
- docs/README.md +2 -6
README.md
CHANGED
@@ -15,7 +15,7 @@ The [PyTorch model](https://drive.google.com/file/d/14CS-s1uv2q6WedYQGeFbZeEWIko
|
|
15 |
## Data
|
16 |
The datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/).
|
17 |
|
18 |
-
|
19 |
|
20 |
### Preprocessing
|
21 |
After downloading this dataset, python script in `scripts` folder named `data_process` can be used to generate label json files by running the command below and modifying `datapath` to path of unziped downloaded data. Generated label json files will be stored in `label` folder under the bundle path.
|
@@ -112,11 +112,7 @@ The classification result of every images in `test.json` will be printed to the
|
|
112 |
#### Export checkpoint to TorchScript file:
|
113 |
|
114 |
```
|
115 |
-
python -m monai.bundle ckpt_export network_def
|
116 |
-
--filepath models/model.ts \
|
117 |
-
--ckpt_file models/model.pt \
|
118 |
-
--meta_file configs/metadata.json \
|
119 |
-
--config_file configs/inference.json
|
120 |
```
|
121 |
|
122 |
# References
|
|
|
15 |
## Data
|
16 |
The datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/).
|
17 |
|
18 |
+
Since datasets are private, we provide a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what they look like.
|
19 |
|
20 |
### Preprocessing
|
21 |
After downloading this dataset, python script in `scripts` folder named `data_process` can be used to generate label json files by running the command below and modifying `datapath` to path of unziped downloaded data. Generated label json files will be stored in `label` folder under the bundle path.
|
|
|
112 |
#### Export checkpoint to TorchScript file:
|
113 |
|
114 |
```
|
115 |
+
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
|
|
|
|
|
|
|
|
|
116 |
```
|
117 |
|
118 |
# References
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.3.
|
4 |
"changelog": {
|
|
|
5 |
"0.3.7": "adapt to BundleWorkflow interface",
|
6 |
"0.3.6": "add name tag",
|
7 |
"0.3.5": "fix a comment issue in the data_process script",
|
@@ -16,7 +17,7 @@
|
|
16 |
"0.1.0": "complete the first version model package",
|
17 |
"0.0.1": "initialize the model package structure"
|
18 |
},
|
19 |
-
"monai_version": "1.2.
|
20 |
"pytorch_version": "1.13.1",
|
21 |
"numpy_version": "1.22.2",
|
22 |
"optional_packages_version": {
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.3.8",
|
4 |
"changelog": {
|
5 |
+
"0.3.8": "enable deterministic training",
|
6 |
"0.3.7": "adapt to BundleWorkflow interface",
|
7 |
"0.3.6": "add name tag",
|
8 |
"0.3.5": "fix a comment issue in the data_process script",
|
|
|
17 |
"0.1.0": "complete the first version model package",
|
18 |
"0.0.1": "initialize the model package structure"
|
19 |
},
|
20 |
+
"monai_version": "1.2.0rc4",
|
21 |
"pytorch_version": "1.13.1",
|
22 |
"numpy_version": "1.22.2",
|
23 |
"optional_packages_version": {
|
configs/multi_gpu_train.json
CHANGED
@@ -28,8 +28,7 @@
|
|
28 |
"$import torch.distributed as dist",
|
29 |
"$dist.is_initialized() or dist.init_process_group(backend='nccl')",
|
30 |
"$torch.cuda.set_device(@device)",
|
31 |
-
"$monai.utils.set_determinism(seed=123)"
|
32 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
33 |
],
|
34 |
"run": [
|
35 |
"$@train#trainer.run()"
|
|
|
28 |
"$import torch.distributed as dist",
|
29 |
"$dist.is_initialized() or dist.init_process_group(backend='nccl')",
|
30 |
"$torch.cuda.set_device(@device)",
|
31 |
+
"$monai.utils.set_determinism(seed=123)"
|
|
|
32 |
],
|
33 |
"run": [
|
34 |
"$@train#trainer.run()"
|
configs/train.json
CHANGED
@@ -252,8 +252,7 @@
|
|
252 |
}
|
253 |
},
|
254 |
"initialize": [
|
255 |
-
"$monai.utils.set_determinism(seed=123)"
|
256 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
257 |
],
|
258 |
"run": [
|
259 |
"$@train#trainer.run()"
|
|
|
252 |
}
|
253 |
},
|
254 |
"initialize": [
|
255 |
+
"$monai.utils.set_determinism(seed=123)"
|
|
|
256 |
],
|
257 |
"run": [
|
258 |
"$@train#trainer.run()"
|
docs/README.md
CHANGED
@@ -8,7 +8,7 @@ The [PyTorch model](https://drive.google.com/file/d/14CS-s1uv2q6WedYQGeFbZeEWIko
|
|
8 |
## Data
|
9 |
The datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/).
|
10 |
|
11 |
-
|
12 |
|
13 |
### Preprocessing
|
14 |
After downloading this dataset, python script in `scripts` folder named `data_process` can be used to generate label json files by running the command below and modifying `datapath` to path of unziped downloaded data. Generated label json files will be stored in `label` folder under the bundle path.
|
@@ -105,11 +105,7 @@ The classification result of every images in `test.json` will be printed to the
|
|
105 |
#### Export checkpoint to TorchScript file:
|
106 |
|
107 |
```
|
108 |
-
python -m monai.bundle ckpt_export network_def
|
109 |
-
--filepath models/model.ts \
|
110 |
-
--ckpt_file models/model.pt \
|
111 |
-
--meta_file configs/metadata.json \
|
112 |
-
--config_file configs/inference.json
|
113 |
```
|
114 |
|
115 |
# References
|
|
|
8 |
## Data
|
9 |
The datasets used in this work were provided by [Activ Surgical](https://www.activsurgical.com/).
|
10 |
|
11 |
+
Since datasets are private, we provide a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what they look like.
|
12 |
|
13 |
### Preprocessing
|
14 |
After downloading this dataset, python script in `scripts` folder named `data_process` can be used to generate label json files by running the command below and modifying `datapath` to path of unziped downloaded data. Generated label json files will be stored in `label` folder under the bundle path.
|
|
|
105 |
#### Export checkpoint to TorchScript file:
|
106 |
|
107 |
```
|
108 |
+
python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
|
|
|
|
|
|
|
|
|
109 |
```
|
110 |
|
111 |
# References
|