adapt to BundleWorkflow interface
Browse files- README.md +5 -16
- configs/evaluate.json +4 -2
- configs/inference.json +5 -3
- configs/metadata.json +5 -4
- configs/multi_gpu_train.json +8 -4
- configs/train.json +6 -4
- docs/README.md +5 -16
README.md
CHANGED
@@ -82,19 +82,14 @@ For more details usage instructions, visit the [MONAI Bundle Configuration Page]
|
|
82 |
#### Execute training:
|
83 |
|
84 |
```
|
85 |
-
python -m monai.bundle run
|
86 |
-
--meta_file configs/metadata.json \
|
87 |
-
--config_file configs/train.json \
|
88 |
-
--logging_file configs/logging.conf
|
89 |
```
|
90 |
|
91 |
#### Override the `train` config to execute multi-GPU training:
|
92 |
|
93 |
```
|
94 |
-
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run
|
95 |
-
--
|
96 |
-
--config_file "['configs/train.json','configs/multi_gpu_train.json']" \
|
97 |
-
--logging_file configs/logging.conf
|
98 |
```
|
99 |
|
100 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
@@ -104,19 +99,13 @@ In addition, if using the 20 samples example dataset, the preprocessing script w
|
|
104 |
#### Override the `train` config to execute evaluation with the trained model:
|
105 |
|
106 |
```
|
107 |
-
python -m monai.bundle run
|
108 |
-
--meta_file configs/metadata.json \
|
109 |
-
--config_file "['configs/train.json','configs/evaluate.json']" \
|
110 |
-
--logging_file configs/logging.conf
|
111 |
```
|
112 |
|
113 |
#### Execute inference:
|
114 |
|
115 |
```
|
116 |
-
python -m monai.bundle run
|
117 |
-
--meta_file configs/metadata.json \
|
118 |
-
--config_file configs/inference.json \
|
119 |
-
--logging_file configs/logging.conf
|
120 |
```
|
121 |
The classification result of every images in `test.json` will be printed to the screen.
|
122 |
|
|
|
82 |
#### Execute training:
|
83 |
|
84 |
```
|
85 |
+
python -m monai.bundle run --config_file configs/train.json
|
|
|
|
|
|
|
86 |
```
|
87 |
|
88 |
#### Override the `train` config to execute multi-GPU training:
|
89 |
|
90 |
```
|
91 |
+
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run \
|
92 |
+
--config_file "['configs/train.json','configs/multi_gpu_train.json']"
|
|
|
|
|
93 |
```
|
94 |
|
95 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
|
|
99 |
#### Override the `train` config to execute evaluation with the trained model:
|
100 |
|
101 |
```
|
102 |
+
python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
|
|
|
|
|
|
|
103 |
```
|
104 |
|
105 |
#### Execute inference:
|
106 |
|
107 |
```
|
108 |
+
python -m monai.bundle run --config_file configs/inference.json
|
|
|
|
|
|
|
109 |
```
|
110 |
The classification result of every images in `test.json` will be printed to the screen.
|
111 |
|
configs/evaluate.json
CHANGED
@@ -41,8 +41,10 @@
|
|
41 |
"summary_ops": "*"
|
42 |
}
|
43 |
],
|
44 |
-
"
|
45 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
|
|
|
|
46 |
"$@validate#evaluator.run()"
|
47 |
]
|
48 |
}
|
|
|
41 |
"summary_ops": "*"
|
42 |
}
|
43 |
],
|
44 |
+
"initialize": [
|
45 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
46 |
+
],
|
47 |
+
"run": [
|
48 |
"$@validate#evaluator.run()"
|
49 |
]
|
50 |
}
|
configs/inference.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"$import os",
|
5 |
"$import torch"
|
6 |
],
|
7 |
-
"bundle_root": "
|
8 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
9 |
"test_json": "$@bundle_root+'/label/test_samples.json'",
|
10 |
"test_fp": "$open(@test_json,'r', encoding='utf8')",
|
@@ -105,8 +105,10 @@
|
|
105 |
"postprocessing": "@postprocessing",
|
106 |
"val_handlers": "@handlers"
|
107 |
},
|
108 |
-
"
|
109 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
|
|
|
|
110 |
"$@evaluator.run()"
|
111 |
]
|
112 |
}
|
|
|
4 |
"$import os",
|
5 |
"$import torch"
|
6 |
],
|
7 |
+
"bundle_root": ".",
|
8 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
9 |
"test_json": "$@bundle_root+'/label/test_samples.json'",
|
10 |
"test_fp": "$open(@test_json,'r', encoding='utf8')",
|
|
|
105 |
"postprocessing": "@postprocessing",
|
106 |
"val_handlers": "@handlers"
|
107 |
},
|
108 |
+
"initialize": [
|
109 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
110 |
+
],
|
111 |
+
"run": [
|
112 |
"$@evaluator.run()"
|
113 |
]
|
114 |
}
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.3.
|
4 |
"changelog": {
|
|
|
5 |
"0.3.6": "add name tag",
|
6 |
"0.3.5": "fix a comment issue in the data_process script",
|
7 |
"0.3.4": "add note for multi-gpu training with example dataset",
|
@@ -15,9 +16,9 @@
|
|
15 |
"0.1.0": "complete the first version model package",
|
16 |
"0.0.1": "initialize the model package structure"
|
17 |
},
|
18 |
-
"monai_version": "1.
|
19 |
-
"pytorch_version": "1.13.
|
20 |
-
"numpy_version": "1.22.
|
21 |
"optional_packages_version": {
|
22 |
"nibabel": "4.0.1",
|
23 |
"pytorch-ignite": "0.4.9"
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.3.7",
|
4 |
"changelog": {
|
5 |
+
"0.3.7": "adapt to BundleWorkflow interface",
|
6 |
"0.3.6": "add name tag",
|
7 |
"0.3.5": "fix a comment issue in the data_process script",
|
8 |
"0.3.4": "add note for multi-gpu training with example dataset",
|
|
|
16 |
"0.1.0": "complete the first version model package",
|
17 |
"0.0.1": "initialize the model package structure"
|
18 |
},
|
19 |
+
"monai_version": "1.2.0rc3",
|
20 |
+
"pytorch_version": "1.13.1",
|
21 |
+
"numpy_version": "1.22.2",
|
22 |
"optional_packages_version": {
|
23 |
"nibabel": "4.0.1",
|
24 |
"pytorch-ignite": "0.4.9"
|
configs/multi_gpu_train.json
CHANGED
@@ -24,13 +24,17 @@
|
|
24 |
},
|
25 |
"validate#dataloader#sampler": "@validate#sampler",
|
26 |
"validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
|
27 |
-
"
|
28 |
"$import torch.distributed as dist",
|
29 |
-
"$dist.init_process_group(backend='nccl')",
|
30 |
"$torch.cuda.set_device(@device)",
|
31 |
"$monai.utils.set_determinism(seed=123)",
|
32 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
"$dist.destroy_process_group()"
|
35 |
]
|
36 |
}
|
|
|
24 |
},
|
25 |
"validate#dataloader#sampler": "@validate#sampler",
|
26 |
"validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
|
27 |
+
"initialize": [
|
28 |
"$import torch.distributed as dist",
|
29 |
+
"$dist.is_initialized() or dist.init_process_group(backend='nccl')",
|
30 |
"$torch.cuda.set_device(@device)",
|
31 |
"$monai.utils.set_determinism(seed=123)",
|
32 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
33 |
+
],
|
34 |
+
"run": [
|
35 |
+
"$@train#trainer.run()"
|
36 |
+
],
|
37 |
+
"finalize": [
|
38 |
"$dist.destroy_process_group()"
|
39 |
]
|
40 |
}
|
configs/train.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"$import json",
|
5 |
"$import ignite"
|
6 |
],
|
7 |
-
"bundle_root": "
|
8 |
"ckpt_dir": "$@bundle_root + '/models'",
|
9 |
"output_dir": "$@bundle_root + '/eval'",
|
10 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
@@ -251,9 +251,11 @@
|
|
251 |
"val_handlers": "@validate#handlers"
|
252 |
}
|
253 |
},
|
254 |
-
"
|
255 |
-
"$monai.utils.set_determinism(seed=
|
256 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
|
|
|
|
257 |
"$@train#trainer.run()"
|
258 |
]
|
259 |
}
|
|
|
4 |
"$import json",
|
5 |
"$import ignite"
|
6 |
],
|
7 |
+
"bundle_root": ".",
|
8 |
"ckpt_dir": "$@bundle_root + '/models'",
|
9 |
"output_dir": "$@bundle_root + '/eval'",
|
10 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
|
|
251 |
"val_handlers": "@validate#handlers"
|
252 |
}
|
253 |
},
|
254 |
+
"initialize": [
|
255 |
+
"$monai.utils.set_determinism(seed=123)",
|
256 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
257 |
+
],
|
258 |
+
"run": [
|
259 |
"$@train#trainer.run()"
|
260 |
]
|
261 |
}
|
docs/README.md
CHANGED
@@ -75,19 +75,14 @@ For more details usage instructions, visit the [MONAI Bundle Configuration Page]
|
|
75 |
#### Execute training:
|
76 |
|
77 |
```
|
78 |
-
python -m monai.bundle run
|
79 |
-
--meta_file configs/metadata.json \
|
80 |
-
--config_file configs/train.json \
|
81 |
-
--logging_file configs/logging.conf
|
82 |
```
|
83 |
|
84 |
#### Override the `train` config to execute multi-GPU training:
|
85 |
|
86 |
```
|
87 |
-
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run
|
88 |
-
--
|
89 |
-
--config_file "['configs/train.json','configs/multi_gpu_train.json']" \
|
90 |
-
--logging_file configs/logging.conf
|
91 |
```
|
92 |
|
93 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
@@ -97,19 +92,13 @@ In addition, if using the 20 samples example dataset, the preprocessing script w
|
|
97 |
#### Override the `train` config to execute evaluation with the trained model:
|
98 |
|
99 |
```
|
100 |
-
python -m monai.bundle run
|
101 |
-
--meta_file configs/metadata.json \
|
102 |
-
--config_file "['configs/train.json','configs/evaluate.json']" \
|
103 |
-
--logging_file configs/logging.conf
|
104 |
```
|
105 |
|
106 |
#### Execute inference:
|
107 |
|
108 |
```
|
109 |
-
python -m monai.bundle run
|
110 |
-
--meta_file configs/metadata.json \
|
111 |
-
--config_file configs/inference.json \
|
112 |
-
--logging_file configs/logging.conf
|
113 |
```
|
114 |
The classification result of every images in `test.json` will be printed to the screen.
|
115 |
|
|
|
75 |
#### Execute training:
|
76 |
|
77 |
```
|
78 |
+
python -m monai.bundle run --config_file configs/train.json
|
|
|
|
|
|
|
79 |
```
|
80 |
|
81 |
#### Override the `train` config to execute multi-GPU training:
|
82 |
|
83 |
```
|
84 |
+
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run \
|
85 |
+
--config_file "['configs/train.json','configs/multi_gpu_train.json']"
|
|
|
|
|
86 |
```
|
87 |
|
88 |
Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
|
|
|
92 |
#### Override the `train` config to execute evaluation with the trained model:
|
93 |
|
94 |
```
|
95 |
+
python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
|
|
|
|
|
|
|
96 |
```
|
97 |
|
98 |
#### Execute inference:
|
99 |
|
100 |
```
|
101 |
+
python -m monai.bundle run --config_file configs/inference.json
|
|
|
|
|
|
|
102 |
```
|
103 |
The classification result of every images in `test.json` will be printed to the screen.
|
104 |
|