metadata
language:
- ar
license: apache-2.0
base_model: openai/whisper-large
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small ar - Mohammed Bakheet
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ar
split: test
args: ar
metrics:
- name: Wer
type: wer
value: 12.614980289093298
Whisper Small ar - Mohammed Bakheet
نموذج كلام للتعرف على الصوت، هذا النموذج يتميز بدقة عالية في التعرف على الصوت باللغة العربية.
This model is a fine-tuned version of openai/whisper-large on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1921
- Wer: 12.6150
Model description
This model is a fine-tuned version of openai/whisper-large on the Common Voice 11.0 dataset. It achieves 12.61 WER. Data augmentation can be implemented to further improve the model performance.
Training and evaluation data
More information needed
Training procedure
This model is trained on the Common Voice 11.0 dataset. It's trained on 64 cores CPU, Nvidia A100 GPU with 48 VRAM, and 100GB Disk space. The GPU utilization reached 100%. Please check the training hyperparameters below.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1952 | 1.6630 | 1000 | 0.1843 | 14.0098 |
0.0339 | 3.3261 | 2000 | 0.1921 | 12.6150 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1