|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
import math
|
|
from dataclasses import dataclass
|
|
from contextlib import nullcontext
|
|
from typing import Literal
|
|
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert config.n_embd % config.n_head == 0
|
|
|
|
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
|
|
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
|
|
|
|
|
self.attn_dropout = nn.Dropout(config.dropout)
|
|
|
|
|
|
self.resid_dropout = nn.Dropout(config.dropout)
|
|
|
|
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
|
|
|
|
self.flash = hasattr(F, "scaled_dot_product_attention")
|
|
|
|
|
|
|
|
if not self.flash:
|
|
|
|
self.register_buffer(
|
|
"bias",
|
|
torch.tril(torch.ones(config.block_size, config.block_size)).view(
|
|
1, 1, config.block_size, config.block_size
|
|
),
|
|
)
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
|
|
if self.flash:
|
|
y = F.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=None,
|
|
dropout_p=self.attn_dropout.p if self.training else 0.0,
|
|
is_causal=True,
|
|
)
|
|
else:
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
|
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
|
|
att = F.softmax(att, dim=-1)
|
|
att = self.attn_dropout(att)
|
|
y = att @ v
|
|
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
y = self.resid_dropout(self.c_proj(y))
|
|
return y
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, ndim, bias):
|
|
"""
|
|
Initializes the LayerNorm module.
|
|
Args:
|
|
ndim (int): is the number of features in the last dimension (e.g., embedding size).
|
|
bias (bool): Whether to include a bias term in the normalization.
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(ndim))
|
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
|
|
|
def forward(self, x):
|
|
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
|
self.gelu = nn.GELU()
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, x):
|
|
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln1 = LayerNorm(config.n_embd, config.bias)
|
|
self.attn = CausalSelfAttention(config)
|
|
self.ln2 = LayerNorm(config.n_embd, config.bias)
|
|
self.mlp = MLP(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln1(x))
|
|
x = x + self.mlp(self.ln2(x))
|
|
return x
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
block_size: int
|
|
vocab_size: int
|
|
n_layer: int
|
|
n_head: int
|
|
n_embd: int
|
|
dropout: float = 0.0
|
|
bias: bool = True
|
|
|
|
|
|
|
|
@dataclass
|
|
class TrainingConfig:
|
|
learning_rate: float = 1e-4
|
|
max_iters: int = 20000
|
|
warmup_steps: int = 1000
|
|
min_lr: float = 5e-4
|
|
eval_iters: int = 500
|
|
batch_size: int = 32
|
|
block_size: int = 128
|
|
gradient_accumulation_steps: int = 32
|
|
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
|
|
device_type: Literal["cuda", "cpu"] = (
|
|
"cuda" if "cuda" in device else "cpu"
|
|
)
|
|
dtype: Literal["bfloat16", "float16"] = (
|
|
"bfloat16"
|
|
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
|
else "float16"
|
|
)
|
|
ptdtype: torch.dtype = {
|
|
"float32": torch.float32,
|
|
"bfloat16": torch.bfloat16,
|
|
"float16": torch.float16,
|
|
}[dtype]
|
|
ctx: nullcontext[None] | torch.autocast = (
|
|
nullcontext()
|
|
if device_type == "cpu"
|
|
else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
|
)
|
|
|
|
|
|
|
|
class GPT(nn.Module):
|
|
"""
|
|
The main GPT model, now with an optional QA head for Question Answering tasks.
|
|
The QA head will predict start and end token indices of the answer span.
|
|
"""
|
|
def __init__(self, config, is_qa_model=False):
|
|
super().__init__()
|
|
assert config.vocab_size is not None
|
|
assert config.block_size is not None
|
|
self.config = config
|
|
self.is_qa_model = is_qa_model
|
|
|
|
self.transformer = nn.ModuleDict(dict(
|
|
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
|
drop = nn.Dropout(config.dropout),
|
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
|
))
|
|
|
|
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
|
|
|
|
if self.is_qa_model:
|
|
self.qa_head = nn.Linear(config.n_embd, 2, bias=False)
|
|
else:
|
|
self.qa_head = None
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
for pn, p in self.named_parameters():
|
|
if pn.endswith('c_proj.weight'):
|
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/((2 * config.n_layer)**0.5))
|
|
|
|
|
|
|
|
n_params = sum(p.numel() for p in self.parameters())
|
|
|
|
non_embedding_params = n_params - self.transformer.wpe.weight.numel()
|
|
print(f"Number of parameters: {non_embedding_params/1e6:.2f}M (excluding positional embeddings)")
|
|
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, input_ids, targets=None, attention_mask=None, token_type_ids=None):
|
|
device = input_ids.device
|
|
b, t = input_ids.size()
|
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
|
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
|
|
|
|
|
tok_emb = self.transformer.wte(input_ids)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
x = self.transformer.drop(tok_emb + pos_emb)
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
x = self.transformer.ln_f(x)
|
|
|
|
if self.is_qa_model and self.qa_head is not None:
|
|
|
|
|
|
|
|
logits = self.qa_head(x)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
if targets is not None:
|
|
|
|
start_positions, end_positions = targets[:, 0], targets[:, 1]
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
valid_tokens_mask = (attention_mask == 1) & (token_type_ids == 1)
|
|
|
|
start_logits = start_logits.masked_fill(~valid_tokens_mask, float('-inf'))
|
|
end_logits = end_logits.masked_fill(~valid_tokens_mask, float('-inf'))
|
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
return start_logits, end_logits, total_loss
|
|
|
|
return start_logits, end_logits, None
|
|
else:
|
|
if targets is not None:
|
|
|
|
logits = self.lm_head(x)
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
|
else:
|
|
|
|
logits = self.lm_head(x[:, [-1], :])
|
|
loss = None
|
|
|
|
return logits, loss
|
|
|
|
@torch.no_grad()
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
|
"""
|
|
Generate tokens given a conditioning sequence.
|
|
idx: Tensor of shape (B, T)
|
|
"""
|
|
if self.is_qa_model:
|
|
print("Warning: generate method is not intended for QA models directly.")
|
|
print("Please use the QA forward pass for inference and post-processing.")
|
|
return idx
|
|
|
|
for _ in range(max_new_tokens):
|
|
idx_cond = (
|
|
idx
|
|
if idx.size(1) <= self.config.block_size
|
|
else idx[:, -self.config.block_size :]
|
|
)
|
|
logits, _ = self(idx_cond)
|
|
logits = logits[:, -1, :] / temperature
|
|
if top_k is not None:
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
|
logits[logits < v[:, [-1]]] = -float("Inf")
|
|
probs = F.softmax(logits, dim=-1)
|
|
idx_next = torch.multinomial(probs, num_samples=1)
|
|
idx = torch.cat((idx, idx_next), dim=1)
|
|
return idx
|
|
|
|
|
|
config = GPTConfig(
|
|
vocab_size=50257,
|
|
block_size=1024,
|
|
n_layer=8,
|
|
n_head=8,
|
|
n_embd=512,
|
|
dropout=0.1,
|
|
bias=True,
|
|
)
|
|
|