Mohamed Hassan Ashmawy
Upload model.py with huggingface_hub
5e488a4 verified
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from dataclasses import dataclass
from contextlib import nullcontext
from typing import Literal
class CausalSelfAttention(nn.Module):
# A causal self-attention layer that supports both flash attention and standard attention.
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0 # Ensures the embedding dimension can be evenly split across attention heads.
# This linear layer projects input x into query (q), key (k), and value (v) vectors —
# all at once (so the output is 3× the size).
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
# After attention is done, this layer projects the output back to the original embedding size.
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# Dropout applied to the attention weights (probabilities).
self.attn_dropout = nn.Dropout(config.dropout)
# Dropout applied after the final projection.
self.resid_dropout = nn.Dropout(config.dropout)
# Store values for easy access later.
self.n_head = config.n_head
self.n_embd = config.n_embd
# Checks whether the efficient Flash Attention API is available in torch.nn.functional.
self.flash = hasattr(F, "scaled_dot_product_attention")
# If Flash Attention is not available, we create a lower triangular mask to ensure causality.
# This mask prevents the model from attending to future tokens in the sequence.
if not self.flash:
# register_buffer ensures this tensor is saved with the model but not updated by gradients.
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.attn_dropout.p if self.training else 0.0,
is_causal=True,
)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
# --- User's Original LayerNorm ---
class LayerNorm(nn.Module):
def __init__(self, ndim, bias):
"""
Initializes the LayerNorm module.
Args:
ndim (int): is the number of features in the last dimension (e.g., embedding size).
bias (bool): Whether to include a bias term in the normalization.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, x):
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5)
# --- End User's Original LayerNorm ---
# --- User's Original MLP ---
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
# --- End User's Original MLP ---
# --- User's Original Block ---
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = LayerNorm(config.n_embd, config.bias)
self.attn = CausalSelfAttention(config)
self.ln2 = LayerNorm(config.n_embd, config.bias)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
# --- End User's Original Block ---
# --- User's Original GPTConfig ---
@dataclass
class GPTConfig:
block_size: int
vocab_size: int
n_layer: int
n_head: int
n_embd: int
dropout: float = 0.0
bias: bool = True
# --- End User's Original GPTConfig ---
# --- User's Original TrainingConfig ---
@dataclass
class TrainingConfig:
learning_rate: float = 1e-4 # more stable training, earlier 1e-4
max_iters: int = 20000 # increase from 25000
warmup_steps: int = 1000 # smoother initial train, earlier 100
min_lr: float = 5e-4 # lower rate, earlier 5e-4
eval_iters: int = 500 # increased from 100
batch_size: int = 32 # changed from 16, better gradient estimate
block_size: int = 128 # changed from 64, capture longer range dependencies
gradient_accumulation_steps: int = 32 # reduced from 50
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
device_type: Literal["cuda", "cpu"] = (
"cuda" if "cuda" in device else "cpu"
) # for later use in torch.autocast
dtype: Literal["bfloat16", "float16"] = (
"bfloat16"
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
else "float16"
)
ptdtype: torch.dtype = {
"float32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[dtype]
ctx: nullcontext[None] | torch.autocast = (
nullcontext()
if device_type == "cpu"
else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
)
# --- End User's Original TrainingConfig ---
class GPT(nn.Module):
"""
The main GPT model, now with an optional QA head for Question Answering tasks.
The QA head will predict start and end token indices of the answer span.
"""
def __init__(self, config, is_qa_model=False):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.is_qa_model = is_qa_model
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = LayerNorm(config.n_embd, bias=config.bias),
))
# Language modeling head (for pre-training)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# QA head (for fine-tuning)
# This will predict start and end logits for the answer span
if self.is_qa_model:
self.qa_head = nn.Linear(config.n_embd, 2, bias=False) # 2 outputs: start_logit, end_logit
else:
self.qa_head = None # No QA head if not a QA model
# tie weights
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/((2 * config.n_layer)**0.5))
# report number of parameters
# n_params calculation will differ slightly if QA head is present
n_params = sum(p.numel() for p in self.parameters())
# For non-embedding count it excludes token embeddings and positional embeddings.
non_embedding_params = n_params - self.transformer.wpe.weight.numel()
print(f"Number of parameters: {non_embedding_params/1e6:.2f}M (excluding positional embeddings)")
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, input_ids, targets=None, attention_mask=None, token_type_ids=None):
device = input_ids.device
b, t = input_ids.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
# forward the GPT model itself
tok_emb = self.transformer.wte(input_ids) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if self.is_qa_model and self.qa_head is not None:
# For QA, we typically use the pooled output or sequence output directly
# For extractive QA, we need logits for each token for start/end prediction
# The output 'x' is (batch_size, sequence_length, n_embd)
logits = self.qa_head(x) # (batch_size, sequence_length, 2)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous() # (batch_size, sequence_length)
end_logits = end_logits.squeeze(-1).contiguous() # (batch_size, sequence_length)
if targets is not None:
# targets for QA are start_positions and end_positions
start_positions, end_positions = targets[:, 0], targets[:, 1]
# Apply attention mask to logits for valid tokens
if attention_mask is not None:
# Tokens that are part of the context (token_type_ids == 1) should be considered for answers
# and also non-padding tokens (attention_mask == 1)
valid_tokens_mask = (attention_mask == 1) & (token_type_ids == 1)
start_logits = start_logits.masked_fill(~valid_tokens_mask, float('-inf'))
end_logits = end_logits.masked_fill(~valid_tokens_mask, float('-inf'))
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) # Use -100 as ignore_index for consistency
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return start_logits, end_logits, total_loss
return start_logits, end_logits, None # For inference
else: # Standard language model for pre-training or text generation
if targets is not None:
# if we are given some targets (e.g. for training), calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100) # Use -100
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Generate tokens given a conditioning sequence.
idx: Tensor of shape (B, T)
"""
if self.is_qa_model:
print("Warning: generate method is not intended for QA models directly.")
print("Please use the QA forward pass for inference and post-processing.")
return idx # Or raise an error
for _ in range(max_new_tokens):
idx_cond = (
idx
if idx.size(1) <= self.config.block_size
else idx[:, -self.config.block_size :]
)
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# The 'config' object for pre-training is also kept here, if it's used by other scripts for its definition
config = GPTConfig(
vocab_size=50257, # use the tokenizer's vocab size
block_size=1024, # or whatever context size you're training with
n_layer=8,
n_head=8,
n_embd=512,
dropout=0.1,
bias=True,
)