mnavas commited on
Commit
11ab216
·
1 Parent(s): d8057e3

Upload . with huggingface_hub

Browse files
.summary/0/events.out.tfevents.1677247769.1b4f54364242 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd53f3ce2c7103fb8d0644900f6a458b127fa846865dbd489d74d01ac2387cc9
3
+ size 2414
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 11.35 +/- 4.49
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 8.90 +/- 5.34
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/checkpoint_000000982_4022272.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee91fdd8597f4dfbdba8542f128481b5f81cd9e0e3407d47b93d4daa1729fc37
3
+ size 34929220
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 1000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 2000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d23b878a6dcb21ff2af4992cdd9bb10523733f615ea90e9528be282cea83b2e6
3
- size 21786785
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b55282d8cd2cab67d7d5d558bbfad544466278619d50dd5c36367a4071609c6
3
+ size 16692227
sf_log.txt CHANGED
@@ -1798,3 +1798,673 @@ main_loop: 35.4650
1798
  [2023-02-24 14:07:35,852][00980] Avg episode rewards: #0: 27.851, true rewards: #0: 11.351
1799
  [2023-02-24 14:07:35,853][00980] Avg episode reward: 27.851, avg true_objective: 11.351
1800
  [2023-02-24 14:08:43,682][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798
  [2023-02-24 14:07:35,852][00980] Avg episode rewards: #0: 27.851, true rewards: #0: 11.351
1799
  [2023-02-24 14:07:35,853][00980] Avg episode reward: 27.851, avg true_objective: 11.351
1800
  [2023-02-24 14:08:43,682][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1801
+ [2023-02-24 14:08:46,837][00980] The model has been pushed to https://huggingface.co/mnavas/rl_course_vizdoom_health_gathering_supreme
1802
+ [2023-02-24 14:09:29,770][00980] Environment doom_basic already registered, overwriting...
1803
+ [2023-02-24 14:09:29,773][00980] Environment doom_two_colors_easy already registered, overwriting...
1804
+ [2023-02-24 14:09:29,775][00980] Environment doom_two_colors_hard already registered, overwriting...
1805
+ [2023-02-24 14:09:29,776][00980] Environment doom_dm already registered, overwriting...
1806
+ [2023-02-24 14:09:29,777][00980] Environment doom_dwango5 already registered, overwriting...
1807
+ [2023-02-24 14:09:29,783][00980] Environment doom_my_way_home_flat_actions already registered, overwriting...
1808
+ [2023-02-24 14:09:29,784][00980] Environment doom_defend_the_center_flat_actions already registered, overwriting...
1809
+ [2023-02-24 14:09:29,785][00980] Environment doom_my_way_home already registered, overwriting...
1810
+ [2023-02-24 14:09:29,786][00980] Environment doom_deadly_corridor already registered, overwriting...
1811
+ [2023-02-24 14:09:29,787][00980] Environment doom_defend_the_center already registered, overwriting...
1812
+ [2023-02-24 14:09:29,788][00980] Environment doom_defend_the_line already registered, overwriting...
1813
+ [2023-02-24 14:09:29,789][00980] Environment doom_health_gathering already registered, overwriting...
1814
+ [2023-02-24 14:09:29,791][00980] Environment doom_health_gathering_supreme already registered, overwriting...
1815
+ [2023-02-24 14:09:29,792][00980] Environment doom_battle already registered, overwriting...
1816
+ [2023-02-24 14:09:29,793][00980] Environment doom_battle2 already registered, overwriting...
1817
+ [2023-02-24 14:09:29,794][00980] Environment doom_duel_bots already registered, overwriting...
1818
+ [2023-02-24 14:09:29,796][00980] Environment doom_deathmatch_bots already registered, overwriting...
1819
+ [2023-02-24 14:09:29,797][00980] Environment doom_duel already registered, overwriting...
1820
+ [2023-02-24 14:09:29,798][00980] Environment doom_deathmatch_full already registered, overwriting...
1821
+ [2023-02-24 14:09:29,799][00980] Environment doom_benchmark already registered, overwriting...
1822
+ [2023-02-24 14:09:29,801][00980] register_encoder_factory: <function make_vizdoom_encoder at 0x7ff7e26f99d0>
1823
+ [2023-02-24 14:09:29,829][00980] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1824
+ [2023-02-24 14:09:29,831][00980] Overriding arg 'train_for_env_steps' with value 2000000 passed from command line
1825
+ [2023-02-24 14:09:29,845][00980] Experiment dir /content/train_dir/default_experiment already exists!
1826
+ [2023-02-24 14:09:29,846][00980] Resuming existing experiment from /content/train_dir/default_experiment...
1827
+ [2023-02-24 14:09:29,848][00980] Weights and Biases integration disabled
1828
+ [2023-02-24 14:09:29,855][00980] Environment var CUDA_VISIBLE_DEVICES is 0
1829
+
1830
+ [2023-02-24 14:09:32,673][00980] Starting experiment with the following configuration:
1831
+ help=False
1832
+ algo=APPO
1833
+ env=doom_health_gathering_supreme
1834
+ experiment=default_experiment
1835
+ train_dir=/content/train_dir
1836
+ restart_behavior=resume
1837
+ device=gpu
1838
+ seed=None
1839
+ num_policies=1
1840
+ async_rl=True
1841
+ serial_mode=False
1842
+ batched_sampling=False
1843
+ num_batches_to_accumulate=2
1844
+ worker_num_splits=2
1845
+ policy_workers_per_policy=1
1846
+ max_policy_lag=1000
1847
+ num_workers=8
1848
+ num_envs_per_worker=4
1849
+ batch_size=1024
1850
+ num_batches_per_epoch=1
1851
+ num_epochs=1
1852
+ rollout=32
1853
+ recurrence=32
1854
+ shuffle_minibatches=False
1855
+ gamma=0.99
1856
+ reward_scale=1.0
1857
+ reward_clip=1000.0
1858
+ value_bootstrap=False
1859
+ normalize_returns=True
1860
+ exploration_loss_coeff=0.001
1861
+ value_loss_coeff=0.5
1862
+ kl_loss_coeff=0.0
1863
+ exploration_loss=symmetric_kl
1864
+ gae_lambda=0.95
1865
+ ppo_clip_ratio=0.1
1866
+ ppo_clip_value=0.2
1867
+ with_vtrace=False
1868
+ vtrace_rho=1.0
1869
+ vtrace_c=1.0
1870
+ optimizer=adam
1871
+ adam_eps=1e-06
1872
+ adam_beta1=0.9
1873
+ adam_beta2=0.999
1874
+ max_grad_norm=4.0
1875
+ learning_rate=0.0001
1876
+ lr_schedule=constant
1877
+ lr_schedule_kl_threshold=0.008
1878
+ lr_adaptive_min=1e-06
1879
+ lr_adaptive_max=0.01
1880
+ obs_subtract_mean=0.0
1881
+ obs_scale=255.0
1882
+ normalize_input=True
1883
+ normalize_input_keys=None
1884
+ decorrelate_experience_max_seconds=0
1885
+ decorrelate_envs_on_one_worker=True
1886
+ actor_worker_gpus=[]
1887
+ set_workers_cpu_affinity=True
1888
+ force_envs_single_thread=False
1889
+ default_niceness=0
1890
+ log_to_file=True
1891
+ experiment_summaries_interval=10
1892
+ flush_summaries_interval=30
1893
+ stats_avg=100
1894
+ summaries_use_frameskip=True
1895
+ heartbeat_interval=20
1896
+ heartbeat_reporting_interval=600
1897
+ train_for_env_steps=2000000
1898
+ train_for_seconds=10000000000
1899
+ save_every_sec=120
1900
+ keep_checkpoints=2
1901
+ load_checkpoint_kind=latest
1902
+ save_milestones_sec=-1
1903
+ save_best_every_sec=5
1904
+ save_best_metric=reward
1905
+ save_best_after=100000
1906
+ benchmark=False
1907
+ encoder_mlp_layers=[512, 512]
1908
+ encoder_conv_architecture=convnet_simple
1909
+ encoder_conv_mlp_layers=[512]
1910
+ use_rnn=True
1911
+ rnn_size=512
1912
+ rnn_type=gru
1913
+ rnn_num_layers=1
1914
+ decoder_mlp_layers=[]
1915
+ nonlinearity=elu
1916
+ policy_initialization=orthogonal
1917
+ policy_init_gain=1.0
1918
+ actor_critic_share_weights=True
1919
+ adaptive_stddev=True
1920
+ continuous_tanh_scale=0.0
1921
+ initial_stddev=1.0
1922
+ use_env_info_cache=False
1923
+ env_gpu_actions=False
1924
+ env_gpu_observations=True
1925
+ env_frameskip=4
1926
+ env_framestack=1
1927
+ pixel_format=CHW
1928
+ use_record_episode_statistics=False
1929
+ with_wandb=False
1930
+ wandb_user=None
1931
+ wandb_project=sample_factory
1932
+ wandb_group=None
1933
+ wandb_job_type=SF
1934
+ wandb_tags=[]
1935
+ with_pbt=False
1936
+ pbt_mix_policies_in_one_env=True
1937
+ pbt_period_env_steps=5000000
1938
+ pbt_start_mutation=20000000
1939
+ pbt_replace_fraction=0.3
1940
+ pbt_mutation_rate=0.15
1941
+ pbt_replace_reward_gap=0.1
1942
+ pbt_replace_reward_gap_absolute=1e-06
1943
+ pbt_optimize_gamma=False
1944
+ pbt_target_objective=true_objective
1945
+ pbt_perturb_min=1.1
1946
+ pbt_perturb_max=1.5
1947
+ num_agents=-1
1948
+ num_humans=0
1949
+ num_bots=-1
1950
+ start_bot_difficulty=None
1951
+ timelimit=None
1952
+ res_w=128
1953
+ res_h=72
1954
+ wide_aspect_ratio=False
1955
+ eval_env_frameskip=1
1956
+ fps=35
1957
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
1958
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
1959
+ git_hash=unknown
1960
+ git_repo_name=not a git repository
1961
+ [2023-02-24 14:09:32,676][00980] Saving configuration to /content/train_dir/default_experiment/config.json...
1962
+ [2023-02-24 14:09:32,680][00980] Rollout worker 0 uses device cpu
1963
+ [2023-02-24 14:09:32,683][00980] Rollout worker 1 uses device cpu
1964
+ [2023-02-24 14:09:32,684][00980] Rollout worker 2 uses device cpu
1965
+ [2023-02-24 14:09:32,685][00980] Rollout worker 3 uses device cpu
1966
+ [2023-02-24 14:09:32,686][00980] Rollout worker 4 uses device cpu
1967
+ [2023-02-24 14:09:32,688][00980] Rollout worker 5 uses device cpu
1968
+ [2023-02-24 14:09:32,689][00980] Rollout worker 6 uses device cpu
1969
+ [2023-02-24 14:09:32,691][00980] Rollout worker 7 uses device cpu
1970
+ [2023-02-24 14:09:32,810][00980] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1971
+ [2023-02-24 14:09:32,813][00980] InferenceWorker_p0-w0: min num requests: 2
1972
+ [2023-02-24 14:09:32,846][00980] Starting all processes...
1973
+ [2023-02-24 14:09:32,847][00980] Starting process learner_proc0
1974
+ [2023-02-24 14:09:32,984][00980] Starting all processes...
1975
+ [2023-02-24 14:09:32,994][00980] Starting process inference_proc0-0
1976
+ [2023-02-24 14:09:32,994][00980] Starting process rollout_proc0
1977
+ [2023-02-24 14:09:32,996][00980] Starting process rollout_proc1
1978
+ [2023-02-24 14:09:32,999][00980] Starting process rollout_proc2
1979
+ [2023-02-24 14:09:32,999][00980] Starting process rollout_proc3
1980
+ [2023-02-24 14:09:32,999][00980] Starting process rollout_proc4
1981
+ [2023-02-24 14:09:33,000][00980] Starting process rollout_proc5
1982
+ [2023-02-24 14:09:33,000][00980] Starting process rollout_proc6
1983
+ [2023-02-24 14:09:33,000][00980] Starting process rollout_proc7
1984
+ [2023-02-24 14:09:41,559][24666] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1985
+ [2023-02-24 14:09:41,559][24666] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
1986
+ [2023-02-24 14:09:41,666][24666] Num visible devices: 1
1987
+ [2023-02-24 14:09:41,726][24666] Starting seed is not provided
1988
+ [2023-02-24 14:09:41,727][24666] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1989
+ [2023-02-24 14:09:41,728][24666] Initializing actor-critic model on device cuda:0
1990
+ [2023-02-24 14:09:41,729][24666] RunningMeanStd input shape: (3, 72, 128)
1991
+ [2023-02-24 14:09:41,730][24666] RunningMeanStd input shape: (1,)
1992
+ [2023-02-24 14:09:41,877][24666] ConvEncoder: input_channels=3
1993
+ [2023-02-24 14:09:43,471][24666] Conv encoder output size: 512
1994
+ [2023-02-24 14:09:43,472][24666] Policy head output size: 512
1995
+ [2023-02-24 14:09:43,665][24666] Created Actor Critic model with architecture:
1996
+ [2023-02-24 14:09:43,674][24666] ActorCriticSharedWeights(
1997
+ (obs_normalizer): ObservationNormalizer(
1998
+ (running_mean_std): RunningMeanStdDictInPlace(
1999
+ (running_mean_std): ModuleDict(
2000
+ (obs): RunningMeanStdInPlace()
2001
+ )
2002
+ )
2003
+ )
2004
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
2005
+ (encoder): VizdoomEncoder(
2006
+ (basic_encoder): ConvEncoder(
2007
+ (enc): RecursiveScriptModule(
2008
+ original_name=ConvEncoderImpl
2009
+ (conv_head): RecursiveScriptModule(
2010
+ original_name=Sequential
2011
+ (0): RecursiveScriptModule(original_name=Conv2d)
2012
+ (1): RecursiveScriptModule(original_name=ELU)
2013
+ (2): RecursiveScriptModule(original_name=Conv2d)
2014
+ (3): RecursiveScriptModule(original_name=ELU)
2015
+ (4): RecursiveScriptModule(original_name=Conv2d)
2016
+ (5): RecursiveScriptModule(original_name=ELU)
2017
+ )
2018
+ (mlp_layers): RecursiveScriptModule(
2019
+ original_name=Sequential
2020
+ (0): RecursiveScriptModule(original_name=Linear)
2021
+ (1): RecursiveScriptModule(original_name=ELU)
2022
+ )
2023
+ )
2024
+ )
2025
+ )
2026
+ (core): ModelCoreRNN(
2027
+ (core): GRU(512, 512)
2028
+ )
2029
+ (decoder): MlpDecoder(
2030
+ (mlp): Identity()
2031
+ )
2032
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
2033
+ (action_parameterization): ActionParameterizationDefault(
2034
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
2035
+ )
2036
+ )
2037
+ [2023-02-24 14:09:43,933][24680] Worker 0 uses CPU cores [0]
2038
+ [2023-02-24 14:09:43,977][24681] Worker 1 uses CPU cores [1]
2039
+ [2023-02-24 14:09:44,335][24683] Using GPUs [0] for process 0 (actually maps to GPUs [0])
2040
+ [2023-02-24 14:09:44,340][24683] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
2041
+ [2023-02-24 14:09:44,430][24683] Num visible devices: 1
2042
+ [2023-02-24 14:09:45,037][24690] Worker 2 uses CPU cores [0]
2043
+ [2023-02-24 14:09:45,309][24688] Worker 3 uses CPU cores [1]
2044
+ [2023-02-24 14:09:45,561][24695] Worker 5 uses CPU cores [1]
2045
+ [2023-02-24 14:09:45,612][24693] Worker 4 uses CPU cores [0]
2046
+ [2023-02-24 14:09:45,799][24701] Worker 7 uses CPU cores [1]
2047
+ [2023-02-24 14:09:45,881][24703] Worker 6 uses CPU cores [0]
2048
+ [2023-02-24 14:09:49,269][24666] Using optimizer <class 'torch.optim.adam.Adam'>
2049
+ [2023-02-24 14:09:49,270][24666] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000980_4014080.pth...
2050
+ [2023-02-24 14:09:49,304][24666] Loading model from checkpoint
2051
+ [2023-02-24 14:09:49,308][24666] Loaded experiment state at self.train_step=980, self.env_steps=4014080
2052
+ [2023-02-24 14:09:49,308][24666] Initialized policy 0 weights for model version 980
2053
+ [2023-02-24 14:09:49,312][24666] LearnerWorker_p0 finished initialization!
2054
+ [2023-02-24 14:09:49,314][24666] Using GPUs [0] for process 0 (actually maps to GPUs [0])
2055
+ [2023-02-24 14:09:49,529][24683] RunningMeanStd input shape: (3, 72, 128)
2056
+ [2023-02-24 14:09:49,531][24683] RunningMeanStd input shape: (1,)
2057
+ [2023-02-24 14:09:49,543][24683] ConvEncoder: input_channels=3
2058
+ [2023-02-24 14:09:49,645][24683] Conv encoder output size: 512
2059
+ [2023-02-24 14:09:49,645][24683] Policy head output size: 512
2060
+ [2023-02-24 14:09:49,856][00980] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4014080. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
2061
+ [2023-02-24 14:09:51,910][00980] Inference worker 0-0 is ready!
2062
+ [2023-02-24 14:09:51,911][00980] All inference workers are ready! Signal rollout workers to start!
2063
+ [2023-02-24 14:09:52,016][24680] Doom resolution: 160x120, resize resolution: (128, 72)
2064
+ [2023-02-24 14:09:52,012][24693] Doom resolution: 160x120, resize resolution: (128, 72)
2065
+ [2023-02-24 14:09:52,014][24703] Doom resolution: 160x120, resize resolution: (128, 72)
2066
+ [2023-02-24 14:09:52,017][24690] Doom resolution: 160x120, resize resolution: (128, 72)
2067
+ [2023-02-24 14:09:52,031][24688] Doom resolution: 160x120, resize resolution: (128, 72)
2068
+ [2023-02-24 14:09:52,032][24695] Doom resolution: 160x120, resize resolution: (128, 72)
2069
+ [2023-02-24 14:09:52,028][24701] Doom resolution: 160x120, resize resolution: (128, 72)
2070
+ [2023-02-24 14:09:52,030][24681] Doom resolution: 160x120, resize resolution: (128, 72)
2071
+ [2023-02-24 14:09:52,803][00980] Heartbeat connected on Batcher_0
2072
+ [2023-02-24 14:09:52,810][00980] Heartbeat connected on LearnerWorker_p0
2073
+ [2023-02-24 14:09:52,840][24701] Decorrelating experience for 0 frames...
2074
+ [2023-02-24 14:09:52,841][24695] Decorrelating experience for 0 frames...
2075
+ [2023-02-24 14:09:52,845][00980] Heartbeat connected on InferenceWorker_p0-w0
2076
+ [2023-02-24 14:09:53,214][24693] Decorrelating experience for 0 frames...
2077
+ [2023-02-24 14:09:53,221][24690] Decorrelating experience for 0 frames...
2078
+ [2023-02-24 14:09:53,227][24703] Decorrelating experience for 0 frames...
2079
+ [2023-02-24 14:09:53,926][24688] Decorrelating experience for 0 frames...
2080
+ [2023-02-24 14:09:53,929][24695] Decorrelating experience for 32 frames...
2081
+ [2023-02-24 14:09:53,931][24701] Decorrelating experience for 32 frames...
2082
+ [2023-02-24 14:09:54,439][24703] Decorrelating experience for 32 frames...
2083
+ [2023-02-24 14:09:54,441][24693] Decorrelating experience for 32 frames...
2084
+ [2023-02-24 14:09:54,501][24680] Decorrelating experience for 0 frames...
2085
+ [2023-02-24 14:09:54,732][24688] Decorrelating experience for 32 frames...
2086
+ [2023-02-24 14:09:54,847][24695] Decorrelating experience for 64 frames...
2087
+ [2023-02-24 14:09:54,855][00980] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4014080. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
2088
+ [2023-02-24 14:09:55,223][24690] Decorrelating experience for 32 frames...
2089
+ [2023-02-24 14:09:55,748][24680] Decorrelating experience for 32 frames...
2090
+ [2023-02-24 14:09:55,944][24688] Decorrelating experience for 64 frames...
2091
+ [2023-02-24 14:09:55,960][24701] Decorrelating experience for 64 frames...
2092
+ [2023-02-24 14:09:55,990][24703] Decorrelating experience for 64 frames...
2093
+ [2023-02-24 14:09:56,934][24681] Decorrelating experience for 0 frames...
2094
+ [2023-02-24 14:09:57,310][24690] Decorrelating experience for 64 frames...
2095
+ [2023-02-24 14:09:58,045][24695] Decorrelating experience for 96 frames...
2096
+ [2023-02-24 14:09:58,046][24693] Decorrelating experience for 64 frames...
2097
+ [2023-02-24 14:09:58,090][24680] Decorrelating experience for 64 frames...
2098
+ [2023-02-24 14:09:58,226][24688] Decorrelating experience for 96 frames...
2099
+ [2023-02-24 14:09:58,248][24701] Decorrelating experience for 96 frames...
2100
+ [2023-02-24 14:09:58,487][00980] Heartbeat connected on RolloutWorker_w5
2101
+ [2023-02-24 14:09:58,896][00980] Heartbeat connected on RolloutWorker_w3
2102
+ [2023-02-24 14:09:58,898][00980] Heartbeat connected on RolloutWorker_w7
2103
+ [2023-02-24 14:09:59,487][24703] Decorrelating experience for 96 frames...
2104
+ [2023-02-24 14:09:59,560][24681] Decorrelating experience for 32 frames...
2105
+ [2023-02-24 14:09:59,855][00980] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4014080. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
2106
+ [2023-02-24 14:10:00,072][00980] Heartbeat connected on RolloutWorker_w6
2107
+ [2023-02-24 14:10:00,336][24690] Decorrelating experience for 96 frames...
2108
+ [2023-02-24 14:10:00,841][00980] Heartbeat connected on RolloutWorker_w2
2109
+ [2023-02-24 14:10:01,251][24693] Decorrelating experience for 96 frames...
2110
+ [2023-02-24 14:10:01,256][24680] Decorrelating experience for 96 frames...
2111
+ [2023-02-24 14:10:01,914][00980] Heartbeat connected on RolloutWorker_w0
2112
+ [2023-02-24 14:10:01,917][24681] Decorrelating experience for 64 frames...
2113
+ [2023-02-24 14:10:01,957][00980] Heartbeat connected on RolloutWorker_w4
2114
+ [2023-02-24 14:10:04,856][00980] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4014080. Throughput: 0: 116.8. Samples: 1752. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
2115
+ [2023-02-24 14:10:04,862][00980] Avg episode reward: [(0, '1.850')]
2116
+ [2023-02-24 14:10:04,999][24666] Signal inference workers to stop experience collection...
2117
+ [2023-02-24 14:10:05,017][24683] InferenceWorker_p0-w0: stopping experience collection
2118
+ [2023-02-24 14:10:05,324][24681] Decorrelating experience for 96 frames...
2119
+ [2023-02-24 14:10:05,455][00980] Heartbeat connected on RolloutWorker_w1
2120
+ [2023-02-24 14:10:07,790][24666] Signal inference workers to resume experience collection...
2121
+ [2023-02-24 14:10:07,790][24683] InferenceWorker_p0-w0: resuming experience collection
2122
+ [2023-02-24 14:10:07,796][24666] Stopping Batcher_0...
2123
+ [2023-02-24 14:10:07,798][24666] Loop batcher_evt_loop terminating...
2124
+ [2023-02-24 14:10:07,799][00980] Component Batcher_0 stopped!
2125
+ [2023-02-24 14:10:07,851][24703] Stopping RolloutWorker_w6...
2126
+ [2023-02-24 14:10:07,851][00980] Component RolloutWorker_w6 stopped!
2127
+ [2023-02-24 14:10:07,860][24693] Stopping RolloutWorker_w4...
2128
+ [2023-02-24 14:10:07,861][24693] Loop rollout_proc4_evt_loop terminating...
2129
+ [2023-02-24 14:10:07,854][24680] Stopping RolloutWorker_w0...
2130
+ [2023-02-24 14:10:07,863][24680] Loop rollout_proc0_evt_loop terminating...
2131
+ [2023-02-24 14:10:07,855][00980] Component RolloutWorker_w0 stopped!
2132
+ [2023-02-24 14:10:07,863][00980] Component RolloutWorker_w4 stopped!
2133
+ [2023-02-24 14:10:07,866][00980] Component RolloutWorker_w2 stopped!
2134
+ [2023-02-24 14:10:07,866][24690] Stopping RolloutWorker_w2...
2135
+ [2023-02-24 14:10:07,851][24703] Loop rollout_proc6_evt_loop terminating...
2136
+ [2023-02-24 14:10:07,870][24690] Loop rollout_proc2_evt_loop terminating...
2137
+ [2023-02-24 14:10:07,886][00980] Component RolloutWorker_w1 stopped!
2138
+ [2023-02-24 14:10:07,886][24681] Stopping RolloutWorker_w1...
2139
+ [2023-02-24 14:10:07,908][00980] Component RolloutWorker_w7 stopped!
2140
+ [2023-02-24 14:10:07,916][00980] Component RolloutWorker_w3 stopped!
2141
+ [2023-02-24 14:10:07,917][24688] Stopping RolloutWorker_w3...
2142
+ [2023-02-24 14:10:07,923][00980] Component RolloutWorker_w5 stopped!
2143
+ [2023-02-24 14:10:07,909][24701] Stopping RolloutWorker_w7...
2144
+ [2023-02-24 14:10:07,904][24681] Loop rollout_proc1_evt_loop terminating...
2145
+ [2023-02-24 14:10:07,924][24695] Stopping RolloutWorker_w5...
2146
+ [2023-02-24 14:10:07,922][24688] Loop rollout_proc3_evt_loop terminating...
2147
+ [2023-02-24 14:10:07,928][24701] Loop rollout_proc7_evt_loop terminating...
2148
+ [2023-02-24 14:10:07,930][24695] Loop rollout_proc5_evt_loop terminating...
2149
+ [2023-02-24 14:10:07,947][24683] Weights refcount: 2 0
2150
+ [2023-02-24 14:10:07,957][24683] Stopping InferenceWorker_p0-w0...
2151
+ [2023-02-24 14:10:07,957][00980] Component InferenceWorker_p0-w0 stopped!
2152
+ [2023-02-24 14:10:07,962][24683] Loop inference_proc0-0_evt_loop terminating...
2153
+ [2023-02-24 14:10:10,081][24666] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000982_4022272.pth...
2154
+ [2023-02-24 14:10:10,180][24666] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
2155
+ [2023-02-24 14:10:10,186][24666] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000982_4022272.pth...
2156
+ [2023-02-24 14:10:10,319][24666] Stopping LearnerWorker_p0...
2157
+ [2023-02-24 14:10:10,320][24666] Loop learner_proc0_evt_loop terminating...
2158
+ [2023-02-24 14:10:10,321][00980] Component LearnerWorker_p0 stopped!
2159
+ [2023-02-24 14:10:10,323][00980] Waiting for process learner_proc0 to stop...
2160
+ [2023-02-24 14:10:11,370][00980] Waiting for process inference_proc0-0 to join...
2161
+ [2023-02-24 14:10:11,373][00980] Waiting for process rollout_proc0 to join...
2162
+ [2023-02-24 14:10:11,376][00980] Waiting for process rollout_proc1 to join...
2163
+ [2023-02-24 14:10:11,379][00980] Waiting for process rollout_proc2 to join...
2164
+ [2023-02-24 14:10:11,382][00980] Waiting for process rollout_proc3 to join...
2165
+ [2023-02-24 14:10:11,385][00980] Waiting for process rollout_proc4 to join...
2166
+ [2023-02-24 14:10:11,386][00980] Waiting for process rollout_proc5 to join...
2167
+ [2023-02-24 14:10:11,388][00980] Waiting for process rollout_proc6 to join...
2168
+ [2023-02-24 14:10:11,390][00980] Waiting for process rollout_proc7 to join...
2169
+ [2023-02-24 14:10:11,391][00980] Batcher 0 profile tree view:
2170
+ batching: 0.1455, releasing_batches: 0.0007
2171
+ [2023-02-24 14:10:11,392][00980] InferenceWorker_p0-w0 profile tree view:
2172
+ wait_policy: 0.0126
2173
+ wait_policy_total: 8.5993
2174
+ update_model: 0.0278
2175
+ weight_update: 0.0017
2176
+ one_step: 0.0564
2177
+ handle_policy_step: 4.2885
2178
+ deserialize: 0.0514, stack: 0.0076, obs_to_device_normalize: 0.4279, forward: 3.3584, send_messages: 0.1076
2179
+ prepare_outputs: 0.2513
2180
+ to_cpu: 0.1288
2181
+ [2023-02-24 14:10:11,393][00980] Learner 0 profile tree view:
2182
+ misc: 0.0000, prepare_batch: 5.3320
2183
+ train: 1.3646
2184
+ epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0003, kl_divergence: 0.0015, after_optimizer: 0.0074
2185
+ calculate_losses: 0.2007
2186
+ losses_init: 0.0000, forward_head: 0.1107, bptt_initial: 0.0672, tail: 0.0012, advantages_returns: 0.0008, losses: 0.0182
2187
+ bptt: 0.0023
2188
+ bptt_forward_core: 0.0021
2189
+ update: 1.1537
2190
+ clip: 0.0045
2191
+ [2023-02-24 14:10:11,395][00980] RolloutWorker_w0 profile tree view:
2192
+ wait_for_trajectories: 0.0015, enqueue_policy_requests: 0.6653, env_step: 1.8552, overhead: 0.1000, complete_rollouts: 0.0290
2193
+ save_policy_outputs: 0.1110
2194
+ split_output_tensors: 0.0652
2195
+ [2023-02-24 14:10:11,400][00980] RolloutWorker_w7 profile tree view:
2196
+ wait_for_trajectories: 0.0007, enqueue_policy_requests: 0.5677, env_step: 2.9069, overhead: 0.1583, complete_rollouts: 0.0367
2197
+ save_policy_outputs: 0.1729
2198
+ split_output_tensors: 0.1089
2199
+ [2023-02-24 14:10:11,401][00980] Loop Runner_EvtLoop terminating...
2200
+ [2023-02-24 14:10:11,403][00980] Runner profile tree view:
2201
+ main_loop: 38.5571
2202
+ [2023-02-24 14:10:11,405][00980] Collected {0: 4022272}, FPS: 212.5
2203
+ [2023-02-24 14:10:11,454][00980] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
2204
+ [2023-02-24 14:10:11,455][00980] Overriding arg 'num_workers' with value 1 passed from command line
2205
+ [2023-02-24 14:10:11,457][00980] Adding new argument 'no_render'=True that is not in the saved config file!
2206
+ [2023-02-24 14:10:11,459][00980] Adding new argument 'save_video'=True that is not in the saved config file!
2207
+ [2023-02-24 14:10:11,463][00980] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
2208
+ [2023-02-24 14:10:11,469][00980] Adding new argument 'video_name'=None that is not in the saved config file!
2209
+ [2023-02-24 14:10:11,472][00980] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
2210
+ [2023-02-24 14:10:11,473][00980] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
2211
+ [2023-02-24 14:10:11,475][00980] Adding new argument 'push_to_hub'=False that is not in the saved config file!
2212
+ [2023-02-24 14:10:11,476][00980] Adding new argument 'hf_repository'=None that is not in the saved config file!
2213
+ [2023-02-24 14:10:11,478][00980] Adding new argument 'policy_index'=0 that is not in the saved config file!
2214
+ [2023-02-24 14:10:11,479][00980] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
2215
+ [2023-02-24 14:10:11,480][00980] Adding new argument 'train_script'=None that is not in the saved config file!
2216
+ [2023-02-24 14:10:11,481][00980] Adding new argument 'enjoy_script'=None that is not in the saved config file!
2217
+ [2023-02-24 14:10:11,483][00980] Using frameskip 1 and render_action_repeat=4 for evaluation
2218
+ [2023-02-24 14:10:11,505][00980] RunningMeanStd input shape: (3, 72, 128)
2219
+ [2023-02-24 14:10:11,512][00980] RunningMeanStd input shape: (1,)
2220
+ [2023-02-24 14:10:11,531][00980] ConvEncoder: input_channels=3
2221
+ [2023-02-24 14:10:11,573][00980] Conv encoder output size: 512
2222
+ [2023-02-24 14:10:11,575][00980] Policy head output size: 512
2223
+ [2023-02-24 14:10:11,597][00980] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000982_4022272.pth...
2224
+ [2023-02-24 14:10:12,226][00980] Num frames 100...
2225
+ [2023-02-24 14:10:12,342][00980] Num frames 200...
2226
+ [2023-02-24 14:10:12,466][00980] Num frames 300...
2227
+ [2023-02-24 14:10:12,599][00980] Num frames 400...
2228
+ [2023-02-24 14:10:12,711][00980] Num frames 500...
2229
+ [2023-02-24 14:10:12,828][00980] Num frames 600...
2230
+ [2023-02-24 14:10:12,947][00980] Num frames 700...
2231
+ [2023-02-24 14:10:13,071][00980] Num frames 800...
2232
+ [2023-02-24 14:10:13,155][00980] Avg episode rewards: #0: 22.240, true rewards: #0: 8.240
2233
+ [2023-02-24 14:10:13,157][00980] Avg episode reward: 22.240, avg true_objective: 8.240
2234
+ [2023-02-24 14:10:13,254][00980] Num frames 900...
2235
+ [2023-02-24 14:10:13,391][00980] Num frames 1000...
2236
+ [2023-02-24 14:10:13,503][00980] Num frames 1100...
2237
+ [2023-02-24 14:10:13,625][00980] Num frames 1200...
2238
+ [2023-02-24 14:10:13,742][00980] Num frames 1300...
2239
+ [2023-02-24 14:10:13,869][00980] Num frames 1400...
2240
+ [2023-02-24 14:10:13,995][00980] Num frames 1500...
2241
+ [2023-02-24 14:10:14,112][00980] Num frames 1600...
2242
+ [2023-02-24 14:10:14,228][00980] Num frames 1700...
2243
+ [2023-02-24 14:10:14,350][00980] Num frames 1800...
2244
+ [2023-02-24 14:10:14,468][00980] Num frames 1900...
2245
+ [2023-02-24 14:10:14,612][00980] Avg episode rewards: #0: 23.880, true rewards: #0: 9.880
2246
+ [2023-02-24 14:10:14,614][00980] Avg episode reward: 23.880, avg true_objective: 9.880
2247
+ [2023-02-24 14:10:14,646][00980] Num frames 2000...
2248
+ [2023-02-24 14:10:14,768][00980] Num frames 2100...
2249
+ [2023-02-24 14:10:14,893][00980] Num frames 2200...
2250
+ [2023-02-24 14:10:14,946][00980] Avg episode rewards: #0: 17.000, true rewards: #0: 7.333
2251
+ [2023-02-24 14:10:14,948][00980] Avg episode reward: 17.000, avg true_objective: 7.333
2252
+ [2023-02-24 14:10:15,119][00980] Num frames 2300...
2253
+ [2023-02-24 14:10:15,316][00980] Num frames 2400...
2254
+ [2023-02-24 14:10:15,494][00980] Num frames 2500...
2255
+ [2023-02-24 14:10:15,671][00980] Num frames 2600...
2256
+ [2023-02-24 14:10:15,840][00980] Num frames 2700...
2257
+ [2023-02-24 14:10:16,019][00980] Num frames 2800...
2258
+ [2023-02-24 14:10:16,200][00980] Num frames 2900...
2259
+ [2023-02-24 14:10:16,366][00980] Num frames 3000...
2260
+ [2023-02-24 14:10:16,531][00980] Num frames 3100...
2261
+ [2023-02-24 14:10:16,699][00980] Num frames 3200...
2262
+ [2023-02-24 14:10:16,857][00980] Num frames 3300...
2263
+ [2023-02-24 14:10:17,023][00980] Num frames 3400...
2264
+ [2023-02-24 14:10:17,190][00980] Num frames 3500...
2265
+ [2023-02-24 14:10:17,357][00980] Num frames 3600...
2266
+ [2023-02-24 14:10:17,518][00980] Num frames 3700...
2267
+ [2023-02-24 14:10:17,635][00980] Avg episode rewards: #0: 22.590, true rewards: #0: 9.340
2268
+ [2023-02-24 14:10:17,636][00980] Avg episode reward: 22.590, avg true_objective: 9.340
2269
+ [2023-02-24 14:10:17,746][00980] Num frames 3800...
2270
+ [2023-02-24 14:10:17,911][00980] Num frames 3900...
2271
+ [2023-02-24 14:10:18,074][00980] Num frames 4000...
2272
+ [2023-02-24 14:10:18,236][00980] Num frames 4100...
2273
+ [2023-02-24 14:10:18,371][00980] Avg episode rewards: #0: 19.304, true rewards: #0: 8.304
2274
+ [2023-02-24 14:10:18,373][00980] Avg episode reward: 19.304, avg true_objective: 8.304
2275
+ [2023-02-24 14:10:18,451][00980] Num frames 4200...
2276
+ [2023-02-24 14:10:18,613][00980] Num frames 4300...
2277
+ [2023-02-24 14:10:18,785][00980] Num frames 4400...
2278
+ [2023-02-24 14:10:18,963][00980] Num frames 4500...
2279
+ [2023-02-24 14:10:19,145][00980] Num frames 4600...
2280
+ [2023-02-24 14:10:19,318][00980] Num frames 4700...
2281
+ [2023-02-24 14:10:19,493][00980] Num frames 4800...
2282
+ [2023-02-24 14:10:19,629][00980] Num frames 4900...
2283
+ [2023-02-24 14:10:19,750][00980] Num frames 5000...
2284
+ [2023-02-24 14:10:19,875][00980] Num frames 5100...
2285
+ [2023-02-24 14:10:19,993][00980] Num frames 5200...
2286
+ [2023-02-24 14:10:20,122][00980] Num frames 5300...
2287
+ [2023-02-24 14:10:20,241][00980] Num frames 5400...
2288
+ [2023-02-24 14:10:20,361][00980] Num frames 5500...
2289
+ [2023-02-24 14:10:20,480][00980] Num frames 5600...
2290
+ [2023-02-24 14:10:20,592][00980] Num frames 5700...
2291
+ [2023-02-24 14:10:20,709][00980] Num frames 5800...
2292
+ [2023-02-24 14:10:20,823][00980] Num frames 5900...
2293
+ [2023-02-24 14:10:20,893][00980] Avg episode rewards: #0: 23.187, true rewards: #0: 9.853
2294
+ [2023-02-24 14:10:20,895][00980] Avg episode reward: 23.187, avg true_objective: 9.853
2295
+ [2023-02-24 14:10:20,999][00980] Num frames 6000...
2296
+ [2023-02-24 14:10:21,065][00980] Avg episode rewards: #0: 20.154, true rewards: #0: 8.583
2297
+ [2023-02-24 14:10:21,066][00980] Avg episode reward: 20.154, avg true_objective: 8.583
2298
+ [2023-02-24 14:10:21,180][00980] Num frames 6100...
2299
+ [2023-02-24 14:10:21,305][00980] Num frames 6200...
2300
+ [2023-02-24 14:10:21,421][00980] Num frames 6300...
2301
+ [2023-02-24 14:10:21,544][00980] Num frames 6400...
2302
+ [2023-02-24 14:10:21,669][00980] Num frames 6500...
2303
+ [2023-02-24 14:10:21,781][00980] Num frames 6600...
2304
+ [2023-02-24 14:10:21,903][00980] Num frames 6700...
2305
+ [2023-02-24 14:10:22,023][00980] Num frames 6800...
2306
+ [2023-02-24 14:10:22,151][00980] Num frames 6900...
2307
+ [2023-02-24 14:10:22,270][00980] Num frames 7000...
2308
+ [2023-02-24 14:10:22,391][00980] Num frames 7100...
2309
+ [2023-02-24 14:10:22,520][00980] Avg episode rewards: #0: 20.951, true rewards: #0: 8.951
2310
+ [2023-02-24 14:10:22,521][00980] Avg episode reward: 20.951, avg true_objective: 8.951
2311
+ [2023-02-24 14:10:22,572][00980] Num frames 7200...
2312
+ [2023-02-24 14:10:22,691][00980] Num frames 7300...
2313
+ [2023-02-24 14:10:22,808][00980] Num frames 7400...
2314
+ [2023-02-24 14:10:22,931][00980] Num frames 7500...
2315
+ [2023-02-24 14:10:23,056][00980] Num frames 7600...
2316
+ [2023-02-24 14:10:23,189][00980] Num frames 7700...
2317
+ [2023-02-24 14:10:23,314][00980] Num frames 7800...
2318
+ [2023-02-24 14:10:23,440][00980] Num frames 7900...
2319
+ [2023-02-24 14:10:23,556][00980] Num frames 8000...
2320
+ [2023-02-24 14:10:23,682][00980] Num frames 8100...
2321
+ [2023-02-24 14:10:23,839][00980] Avg episode rewards: #0: 21.100, true rewards: #0: 9.100
2322
+ [2023-02-24 14:10:23,841][00980] Avg episode reward: 21.100, avg true_objective: 9.100
2323
+ [2023-02-24 14:10:23,857][00980] Num frames 8200...
2324
+ [2023-02-24 14:10:23,974][00980] Num frames 8300...
2325
+ [2023-02-24 14:10:24,100][00980] Num frames 8400...
2326
+ [2023-02-24 14:10:24,219][00980] Num frames 8500...
2327
+ [2023-02-24 14:10:24,333][00980] Num frames 8600...
2328
+ [2023-02-24 14:10:24,450][00980] Num frames 8700...
2329
+ [2023-02-24 14:10:24,566][00980] Num frames 8800...
2330
+ [2023-02-24 14:10:24,690][00980] Num frames 8900...
2331
+ [2023-02-24 14:10:24,807][00980] Num frames 9000...
2332
+ [2023-02-24 14:10:24,928][00980] Num frames 9100...
2333
+ [2023-02-24 14:10:25,045][00980] Num frames 9200...
2334
+ [2023-02-24 14:10:25,176][00980] Num frames 9300...
2335
+ [2023-02-24 14:10:25,295][00980] Num frames 9400...
2336
+ [2023-02-24 14:10:25,420][00980] Num frames 9500...
2337
+ [2023-02-24 14:10:25,546][00980] Num frames 9600...
2338
+ [2023-02-24 14:10:25,620][00980] Avg episode rewards: #0: 22.314, true rewards: #0: 9.614
2339
+ [2023-02-24 14:10:25,622][00980] Avg episode reward: 22.314, avg true_objective: 9.614
2340
+ [2023-02-24 14:11:23,996][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
2341
+ [2023-02-24 14:11:24,026][00980] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
2342
+ [2023-02-24 14:11:24,027][00980] Overriding arg 'num_workers' with value 1 passed from command line
2343
+ [2023-02-24 14:11:24,028][00980] Adding new argument 'no_render'=True that is not in the saved config file!
2344
+ [2023-02-24 14:11:24,031][00980] Adding new argument 'save_video'=True that is not in the saved config file!
2345
+ [2023-02-24 14:11:24,033][00980] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
2346
+ [2023-02-24 14:11:24,035][00980] Adding new argument 'video_name'=None that is not in the saved config file!
2347
+ [2023-02-24 14:11:24,045][00980] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
2348
+ [2023-02-24 14:11:24,047][00980] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
2349
+ [2023-02-24 14:11:24,050][00980] Adding new argument 'push_to_hub'=True that is not in the saved config file!
2350
+ [2023-02-24 14:11:24,053][00980] Adding new argument 'hf_repository'='mnavas/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
2351
+ [2023-02-24 14:11:24,055][00980] Adding new argument 'policy_index'=0 that is not in the saved config file!
2352
+ [2023-02-24 14:11:24,058][00980] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
2353
+ [2023-02-24 14:11:24,059][00980] Adding new argument 'train_script'=None that is not in the saved config file!
2354
+ [2023-02-24 14:11:24,060][00980] Adding new argument 'enjoy_script'=None that is not in the saved config file!
2355
+ [2023-02-24 14:11:24,062][00980] Using frameskip 1 and render_action_repeat=4 for evaluation
2356
+ [2023-02-24 14:11:24,081][00980] RunningMeanStd input shape: (3, 72, 128)
2357
+ [2023-02-24 14:11:24,083][00980] RunningMeanStd input shape: (1,)
2358
+ [2023-02-24 14:11:24,098][00980] ConvEncoder: input_channels=3
2359
+ [2023-02-24 14:11:24,135][00980] Conv encoder output size: 512
2360
+ [2023-02-24 14:11:24,139][00980] Policy head output size: 512
2361
+ [2023-02-24 14:11:24,159][00980] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000982_4022272.pth...
2362
+ [2023-02-24 14:11:24,602][00980] Num frames 100...
2363
+ [2023-02-24 14:11:24,723][00980] Num frames 200...
2364
+ [2023-02-24 14:11:24,864][00980] Avg episode rewards: #0: 5.760, true rewards: #0: 2.760
2365
+ [2023-02-24 14:11:24,866][00980] Avg episode reward: 5.760, avg true_objective: 2.760
2366
+ [2023-02-24 14:11:24,899][00980] Num frames 300...
2367
+ [2023-02-24 14:11:25,014][00980] Num frames 400...
2368
+ [2023-02-24 14:11:25,127][00980] Num frames 500...
2369
+ [2023-02-24 14:11:25,239][00980] Num frames 600...
2370
+ [2023-02-24 14:11:25,361][00980] Num frames 700...
2371
+ [2023-02-24 14:11:25,478][00980] Num frames 800...
2372
+ [2023-02-24 14:11:25,598][00980] Num frames 900...
2373
+ [2023-02-24 14:11:25,720][00980] Num frames 1000...
2374
+ [2023-02-24 14:11:25,780][00980] Avg episode rewards: #0: 11.015, true rewards: #0: 5.015
2375
+ [2023-02-24 14:11:25,781][00980] Avg episode reward: 11.015, avg true_objective: 5.015
2376
+ [2023-02-24 14:11:25,893][00980] Num frames 1100...
2377
+ [2023-02-24 14:11:26,017][00980] Num frames 1200...
2378
+ [2023-02-24 14:11:26,132][00980] Num frames 1300...
2379
+ [2023-02-24 14:11:26,254][00980] Num frames 1400...
2380
+ [2023-02-24 14:11:26,368][00980] Num frames 1500...
2381
+ [2023-02-24 14:11:26,484][00980] Num frames 1600...
2382
+ [2023-02-24 14:11:26,621][00980] Num frames 1700...
2383
+ [2023-02-24 14:11:26,803][00980] Num frames 1800...
2384
+ [2023-02-24 14:11:26,965][00980] Num frames 1900...
2385
+ [2023-02-24 14:11:27,126][00980] Num frames 2000...
2386
+ [2023-02-24 14:11:27,288][00980] Num frames 2100...
2387
+ [2023-02-24 14:11:27,438][00980] Avg episode rewards: #0: 15.183, true rewards: #0: 7.183
2388
+ [2023-02-24 14:11:27,441][00980] Avg episode reward: 15.183, avg true_objective: 7.183
2389
+ [2023-02-24 14:11:27,529][00980] Num frames 2200...
2390
+ [2023-02-24 14:11:27,688][00980] Num frames 2300...
2391
+ [2023-02-24 14:11:27,853][00980] Num frames 2400...
2392
+ [2023-02-24 14:11:28,016][00980] Num frames 2500...
2393
+ [2023-02-24 14:11:28,173][00980] Num frames 2600...
2394
+ [2023-02-24 14:11:28,336][00980] Num frames 2700...
2395
+ [2023-02-24 14:11:28,499][00980] Num frames 2800...
2396
+ [2023-02-24 14:11:28,668][00980] Num frames 2900...
2397
+ [2023-02-24 14:11:28,828][00980] Num frames 3000...
2398
+ [2023-02-24 14:11:29,003][00980] Num frames 3100...
2399
+ [2023-02-24 14:11:29,184][00980] Num frames 3200...
2400
+ [2023-02-24 14:11:29,363][00980] Num frames 3300...
2401
+ [2023-02-24 14:11:29,537][00980] Num frames 3400...
2402
+ [2023-02-24 14:11:29,710][00980] Num frames 3500...
2403
+ [2023-02-24 14:11:29,884][00980] Num frames 3600...
2404
+ [2023-02-24 14:11:30,060][00980] Num frames 3700...
2405
+ [2023-02-24 14:11:30,160][00980] Avg episode rewards: #0: 21.807, true rewards: #0: 9.307
2406
+ [2023-02-24 14:11:30,162][00980] Avg episode reward: 21.807, avg true_objective: 9.307
2407
+ [2023-02-24 14:11:30,272][00980] Num frames 3800...
2408
+ [2023-02-24 14:11:30,387][00980] Num frames 3900...
2409
+ [2023-02-24 14:11:30,504][00980] Num frames 4000...
2410
+ [2023-02-24 14:11:30,625][00980] Num frames 4100...
2411
+ [2023-02-24 14:11:30,746][00980] Num frames 4200...
2412
+ [2023-02-24 14:11:30,851][00980] Avg episode rewards: #0: 19.284, true rewards: #0: 8.484
2413
+ [2023-02-24 14:11:30,853][00980] Avg episode reward: 19.284, avg true_objective: 8.484
2414
+ [2023-02-24 14:11:30,922][00980] Num frames 4300...
2415
+ [2023-02-24 14:11:31,038][00980] Num frames 4400...
2416
+ [2023-02-24 14:11:31,164][00980] Num frames 4500...
2417
+ [2023-02-24 14:11:31,287][00980] Num frames 4600...
2418
+ [2023-02-24 14:11:31,406][00980] Num frames 4700...
2419
+ [2023-02-24 14:11:31,517][00980] Num frames 4800...
2420
+ [2023-02-24 14:11:31,633][00980] Num frames 4900...
2421
+ [2023-02-24 14:11:31,746][00980] Num frames 5000...
2422
+ [2023-02-24 14:11:31,851][00980] Avg episode rewards: #0: 19.237, true rewards: #0: 8.403
2423
+ [2023-02-24 14:11:31,853][00980] Avg episode reward: 19.237, avg true_objective: 8.403
2424
+ [2023-02-24 14:11:31,924][00980] Num frames 5100...
2425
+ [2023-02-24 14:11:32,046][00980] Num frames 5200...
2426
+ [2023-02-24 14:11:32,170][00980] Num frames 5300...
2427
+ [2023-02-24 14:11:32,286][00980] Num frames 5400...
2428
+ [2023-02-24 14:11:32,397][00980] Num frames 5500...
2429
+ [2023-02-24 14:11:32,512][00980] Avg episode rewards: #0: 17.506, true rewards: #0: 7.934
2430
+ [2023-02-24 14:11:32,513][00980] Avg episode reward: 17.506, avg true_objective: 7.934
2431
+ [2023-02-24 14:11:32,568][00980] Num frames 5600...
2432
+ [2023-02-24 14:11:32,687][00980] Num frames 5700...
2433
+ [2023-02-24 14:11:32,800][00980] Num frames 5800...
2434
+ [2023-02-24 14:11:32,920][00980] Num frames 5900...
2435
+ [2023-02-24 14:11:33,040][00980] Num frames 6000...
2436
+ [2023-02-24 14:11:33,157][00980] Num frames 6100...
2437
+ [2023-02-24 14:11:33,280][00980] Num frames 6200...
2438
+ [2023-02-24 14:11:33,441][00980] Avg episode rewards: #0: 17.363, true rewards: #0: 7.862
2439
+ [2023-02-24 14:11:33,442][00980] Avg episode reward: 17.363, avg true_objective: 7.862
2440
+ [2023-02-24 14:11:33,457][00980] Num frames 6300...
2441
+ [2023-02-24 14:11:33,571][00980] Num frames 6400...
2442
+ [2023-02-24 14:11:33,685][00980] Num frames 6500...
2443
+ [2023-02-24 14:11:33,807][00980] Num frames 6600...
2444
+ [2023-02-24 14:11:33,927][00980] Num frames 6700...
2445
+ [2023-02-24 14:11:34,099][00980] Avg episode rewards: #0: 16.440, true rewards: #0: 7.551
2446
+ [2023-02-24 14:11:34,102][00980] Avg episode reward: 16.440, avg true_objective: 7.551
2447
+ [2023-02-24 14:11:34,110][00980] Num frames 6800...
2448
+ [2023-02-24 14:11:34,224][00980] Num frames 6900...
2449
+ [2023-02-24 14:11:34,343][00980] Num frames 7000...
2450
+ [2023-02-24 14:11:34,457][00980] Num frames 7100...
2451
+ [2023-02-24 14:11:34,576][00980] Num frames 7200...
2452
+ [2023-02-24 14:11:34,691][00980] Num frames 7300...
2453
+ [2023-02-24 14:11:34,805][00980] Num frames 7400...
2454
+ [2023-02-24 14:11:34,926][00980] Num frames 7500...
2455
+ [2023-02-24 14:11:35,044][00980] Num frames 7600...
2456
+ [2023-02-24 14:11:35,165][00980] Num frames 7700...
2457
+ [2023-02-24 14:11:35,281][00980] Num frames 7800...
2458
+ [2023-02-24 14:11:35,399][00980] Num frames 7900...
2459
+ [2023-02-24 14:11:35,514][00980] Num frames 8000...
2460
+ [2023-02-24 14:11:35,643][00980] Num frames 8100...
2461
+ [2023-02-24 14:11:35,756][00980] Num frames 8200...
2462
+ [2023-02-24 14:11:35,872][00980] Num frames 8300...
2463
+ [2023-02-24 14:11:36,001][00980] Num frames 8400...
2464
+ [2023-02-24 14:11:36,126][00980] Num frames 8500...
2465
+ [2023-02-24 14:11:36,241][00980] Num frames 8600...
2466
+ [2023-02-24 14:11:36,360][00980] Num frames 8700...
2467
+ [2023-02-24 14:11:36,486][00980] Num frames 8800...
2468
+ [2023-02-24 14:11:36,650][00980] Avg episode rewards: #0: 20.196, true rewards: #0: 8.896
2469
+ [2023-02-24 14:11:36,652][00980] Avg episode reward: 20.196, avg true_objective: 8.896
2470
+ [2023-02-24 14:12:30,762][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!