mnavas commited on
Commit
d8057e3
·
1 Parent(s): 837c0e1

Upload . with huggingface_hub

Browse files
.summary/0/events.out.tfevents.1677247527.1b4f54364242 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:599bbd1dba9c20f58c1da13b3aeda3a00067c09c9e5d65e32a95a2c3436ffa2f
3
+ size 4801
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.99 +/- 3.41
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 11.35 +/- 4.49
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/checkpoint_000000980_4014080.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04a3906ab0c51e184e823418ef57c36be1f55b4c58628ed3a75985c8faa12a90
3
+ size 34929220
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 4000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 1000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2026b523afe281c85d9af34c88279becde2f93279dff4d2f7ae9af03695dce00
3
- size 18966078
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d23b878a6dcb21ff2af4992cdd9bb10523733f615ea90e9528be282cea83b2e6
3
+ size 21786785
sf_log.txt CHANGED
@@ -1098,3 +1098,703 @@ main_loop: 1068.9353
1098
  [2023-02-24 13:57:36,392][00980] Avg episode rewards: #0: 22.988, true rewards: #0: 9.988
1099
  [2023-02-24 13:57:36,394][00980] Avg episode reward: 22.988, avg true_objective: 9.988
1100
  [2023-02-24 13:58:35,822][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098
  [2023-02-24 13:57:36,392][00980] Avg episode rewards: #0: 22.988, true rewards: #0: 9.988
1099
  [2023-02-24 13:57:36,394][00980] Avg episode reward: 22.988, avg true_objective: 9.988
1100
  [2023-02-24 13:58:35,822][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1101
+ [2023-02-24 13:58:39,900][00980] The model has been pushed to https://huggingface.co/mnavas/rl_course_vizdoom_health_gathering_supreme
1102
+ [2023-02-24 14:05:27,094][00980] Environment doom_basic already registered, overwriting...
1103
+ [2023-02-24 14:05:27,098][00980] Environment doom_two_colors_easy already registered, overwriting...
1104
+ [2023-02-24 14:05:27,100][00980] Environment doom_two_colors_hard already registered, overwriting...
1105
+ [2023-02-24 14:05:27,101][00980] Environment doom_dm already registered, overwriting...
1106
+ [2023-02-24 14:05:27,105][00980] Environment doom_dwango5 already registered, overwriting...
1107
+ [2023-02-24 14:05:27,107][00980] Environment doom_my_way_home_flat_actions already registered, overwriting...
1108
+ [2023-02-24 14:05:27,109][00980] Environment doom_defend_the_center_flat_actions already registered, overwriting...
1109
+ [2023-02-24 14:05:27,110][00980] Environment doom_my_way_home already registered, overwriting...
1110
+ [2023-02-24 14:05:27,114][00980] Environment doom_deadly_corridor already registered, overwriting...
1111
+ [2023-02-24 14:05:27,115][00980] Environment doom_defend_the_center already registered, overwriting...
1112
+ [2023-02-24 14:05:27,119][00980] Environment doom_defend_the_line already registered, overwriting...
1113
+ [2023-02-24 14:05:27,120][00980] Environment doom_health_gathering already registered, overwriting...
1114
+ [2023-02-24 14:05:27,121][00980] Environment doom_health_gathering_supreme already registered, overwriting...
1115
+ [2023-02-24 14:05:27,122][00980] Environment doom_battle already registered, overwriting...
1116
+ [2023-02-24 14:05:27,124][00980] Environment doom_battle2 already registered, overwriting...
1117
+ [2023-02-24 14:05:27,128][00980] Environment doom_duel_bots already registered, overwriting...
1118
+ [2023-02-24 14:05:27,130][00980] Environment doom_deathmatch_bots already registered, overwriting...
1119
+ [2023-02-24 14:05:27,131][00980] Environment doom_duel already registered, overwriting...
1120
+ [2023-02-24 14:05:27,132][00980] Environment doom_deathmatch_full already registered, overwriting...
1121
+ [2023-02-24 14:05:27,133][00980] Environment doom_benchmark already registered, overwriting...
1122
+ [2023-02-24 14:05:27,135][00980] register_encoder_factory: <function make_vizdoom_encoder at 0x7ff7e26f99d0>
1123
+ [2023-02-24 14:05:27,169][00980] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1124
+ [2023-02-24 14:05:27,170][00980] Overriding arg 'train_for_env_steps' with value 1000000 passed from command line
1125
+ [2023-02-24 14:05:27,179][00980] Experiment dir /content/train_dir/default_experiment already exists!
1126
+ [2023-02-24 14:05:27,185][00980] Resuming existing experiment from /content/train_dir/default_experiment...
1127
+ [2023-02-24 14:05:27,186][00980] Weights and Biases integration disabled
1128
+ [2023-02-24 14:05:27,191][00980] Environment var CUDA_VISIBLE_DEVICES is 0
1129
+
1130
+ [2023-02-24 14:05:29,280][00980] Starting experiment with the following configuration:
1131
+ help=False
1132
+ algo=APPO
1133
+ env=doom_health_gathering_supreme
1134
+ experiment=default_experiment
1135
+ train_dir=/content/train_dir
1136
+ restart_behavior=resume
1137
+ device=gpu
1138
+ seed=None
1139
+ num_policies=1
1140
+ async_rl=True
1141
+ serial_mode=False
1142
+ batched_sampling=False
1143
+ num_batches_to_accumulate=2
1144
+ worker_num_splits=2
1145
+ policy_workers_per_policy=1
1146
+ max_policy_lag=1000
1147
+ num_workers=8
1148
+ num_envs_per_worker=4
1149
+ batch_size=1024
1150
+ num_batches_per_epoch=1
1151
+ num_epochs=1
1152
+ rollout=32
1153
+ recurrence=32
1154
+ shuffle_minibatches=False
1155
+ gamma=0.99
1156
+ reward_scale=1.0
1157
+ reward_clip=1000.0
1158
+ value_bootstrap=False
1159
+ normalize_returns=True
1160
+ exploration_loss_coeff=0.001
1161
+ value_loss_coeff=0.5
1162
+ kl_loss_coeff=0.0
1163
+ exploration_loss=symmetric_kl
1164
+ gae_lambda=0.95
1165
+ ppo_clip_ratio=0.1
1166
+ ppo_clip_value=0.2
1167
+ with_vtrace=False
1168
+ vtrace_rho=1.0
1169
+ vtrace_c=1.0
1170
+ optimizer=adam
1171
+ adam_eps=1e-06
1172
+ adam_beta1=0.9
1173
+ adam_beta2=0.999
1174
+ max_grad_norm=4.0
1175
+ learning_rate=0.0001
1176
+ lr_schedule=constant
1177
+ lr_schedule_kl_threshold=0.008
1178
+ lr_adaptive_min=1e-06
1179
+ lr_adaptive_max=0.01
1180
+ obs_subtract_mean=0.0
1181
+ obs_scale=255.0
1182
+ normalize_input=True
1183
+ normalize_input_keys=None
1184
+ decorrelate_experience_max_seconds=0
1185
+ decorrelate_envs_on_one_worker=True
1186
+ actor_worker_gpus=[]
1187
+ set_workers_cpu_affinity=True
1188
+ force_envs_single_thread=False
1189
+ default_niceness=0
1190
+ log_to_file=True
1191
+ experiment_summaries_interval=10
1192
+ flush_summaries_interval=30
1193
+ stats_avg=100
1194
+ summaries_use_frameskip=True
1195
+ heartbeat_interval=20
1196
+ heartbeat_reporting_interval=600
1197
+ train_for_env_steps=1000000
1198
+ train_for_seconds=10000000000
1199
+ save_every_sec=120
1200
+ keep_checkpoints=2
1201
+ load_checkpoint_kind=latest
1202
+ save_milestones_sec=-1
1203
+ save_best_every_sec=5
1204
+ save_best_metric=reward
1205
+ save_best_after=100000
1206
+ benchmark=False
1207
+ encoder_mlp_layers=[512, 512]
1208
+ encoder_conv_architecture=convnet_simple
1209
+ encoder_conv_mlp_layers=[512]
1210
+ use_rnn=True
1211
+ rnn_size=512
1212
+ rnn_type=gru
1213
+ rnn_num_layers=1
1214
+ decoder_mlp_layers=[]
1215
+ nonlinearity=elu
1216
+ policy_initialization=orthogonal
1217
+ policy_init_gain=1.0
1218
+ actor_critic_share_weights=True
1219
+ adaptive_stddev=True
1220
+ continuous_tanh_scale=0.0
1221
+ initial_stddev=1.0
1222
+ use_env_info_cache=False
1223
+ env_gpu_actions=False
1224
+ env_gpu_observations=True
1225
+ env_frameskip=4
1226
+ env_framestack=1
1227
+ pixel_format=CHW
1228
+ use_record_episode_statistics=False
1229
+ with_wandb=False
1230
+ wandb_user=None
1231
+ wandb_project=sample_factory
1232
+ wandb_group=None
1233
+ wandb_job_type=SF
1234
+ wandb_tags=[]
1235
+ with_pbt=False
1236
+ pbt_mix_policies_in_one_env=True
1237
+ pbt_period_env_steps=5000000
1238
+ pbt_start_mutation=20000000
1239
+ pbt_replace_fraction=0.3
1240
+ pbt_mutation_rate=0.15
1241
+ pbt_replace_reward_gap=0.1
1242
+ pbt_replace_reward_gap_absolute=1e-06
1243
+ pbt_optimize_gamma=False
1244
+ pbt_target_objective=true_objective
1245
+ pbt_perturb_min=1.1
1246
+ pbt_perturb_max=1.5
1247
+ num_agents=-1
1248
+ num_humans=0
1249
+ num_bots=-1
1250
+ start_bot_difficulty=None
1251
+ timelimit=None
1252
+ res_w=128
1253
+ res_h=72
1254
+ wide_aspect_ratio=False
1255
+ eval_env_frameskip=1
1256
+ fps=35
1257
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
1258
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
1259
+ git_hash=unknown
1260
+ git_repo_name=not a git repository
1261
+ [2023-02-24 14:05:29,284][00980] Saving configuration to /content/train_dir/default_experiment/config.json...
1262
+ [2023-02-24 14:05:29,288][00980] Rollout worker 0 uses device cpu
1263
+ [2023-02-24 14:05:29,293][00980] Rollout worker 1 uses device cpu
1264
+ [2023-02-24 14:05:29,295][00980] Rollout worker 2 uses device cpu
1265
+ [2023-02-24 14:05:29,297][00980] Rollout worker 3 uses device cpu
1266
+ [2023-02-24 14:05:29,299][00980] Rollout worker 4 uses device cpu
1267
+ [2023-02-24 14:05:29,301][00980] Rollout worker 5 uses device cpu
1268
+ [2023-02-24 14:05:29,303][00980] Rollout worker 6 uses device cpu
1269
+ [2023-02-24 14:05:29,305][00980] Rollout worker 7 uses device cpu
1270
+ [2023-02-24 14:05:29,424][00980] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1271
+ [2023-02-24 14:05:29,426][00980] InferenceWorker_p0-w0: min num requests: 2
1272
+ [2023-02-24 14:05:29,459][00980] Starting all processes...
1273
+ [2023-02-24 14:05:29,461][00980] Starting process learner_proc0
1274
+ [2023-02-24 14:05:29,592][00980] Starting all processes...
1275
+ [2023-02-24 14:05:29,603][00980] Starting process inference_proc0-0
1276
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc0
1277
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc1
1278
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc2
1279
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc3
1280
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc4
1281
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc5
1282
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc6
1283
+ [2023-02-24 14:05:29,604][00980] Starting process rollout_proc7
1284
+ [2023-02-24 14:05:37,475][20720] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1285
+ [2023-02-24 14:05:37,492][20720] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
1286
+ [2023-02-24 14:05:37,530][20720] Num visible devices: 1
1287
+ [2023-02-24 14:05:37,562][20720] Starting seed is not provided
1288
+ [2023-02-24 14:05:37,563][20720] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1289
+ [2023-02-24 14:05:37,564][20720] Initializing actor-critic model on device cuda:0
1290
+ [2023-02-24 14:05:37,565][20720] RunningMeanStd input shape: (3, 72, 128)
1291
+ [2023-02-24 14:05:37,567][20720] RunningMeanStd input shape: (1,)
1292
+ [2023-02-24 14:05:37,652][20720] ConvEncoder: input_channels=3
1293
+ [2023-02-24 14:05:38,454][20720] Conv encoder output size: 512
1294
+ [2023-02-24 14:05:38,462][20720] Policy head output size: 512
1295
+ [2023-02-24 14:05:38,547][20720] Created Actor Critic model with architecture:
1296
+ [2023-02-24 14:05:38,560][20720] ActorCriticSharedWeights(
1297
+ (obs_normalizer): ObservationNormalizer(
1298
+ (running_mean_std): RunningMeanStdDictInPlace(
1299
+ (running_mean_std): ModuleDict(
1300
+ (obs): RunningMeanStdInPlace()
1301
+ )
1302
+ )
1303
+ )
1304
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
1305
+ (encoder): VizdoomEncoder(
1306
+ (basic_encoder): ConvEncoder(
1307
+ (enc): RecursiveScriptModule(
1308
+ original_name=ConvEncoderImpl
1309
+ (conv_head): RecursiveScriptModule(
1310
+ original_name=Sequential
1311
+ (0): RecursiveScriptModule(original_name=Conv2d)
1312
+ (1): RecursiveScriptModule(original_name=ELU)
1313
+ (2): RecursiveScriptModule(original_name=Conv2d)
1314
+ (3): RecursiveScriptModule(original_name=ELU)
1315
+ (4): RecursiveScriptModule(original_name=Conv2d)
1316
+ (5): RecursiveScriptModule(original_name=ELU)
1317
+ )
1318
+ (mlp_layers): RecursiveScriptModule(
1319
+ original_name=Sequential
1320
+ (0): RecursiveScriptModule(original_name=Linear)
1321
+ (1): RecursiveScriptModule(original_name=ELU)
1322
+ )
1323
+ )
1324
+ )
1325
+ )
1326
+ (core): ModelCoreRNN(
1327
+ (core): GRU(512, 512)
1328
+ )
1329
+ (decoder): MlpDecoder(
1330
+ (mlp): Identity()
1331
+ )
1332
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
1333
+ (action_parameterization): ActionParameterizationDefault(
1334
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
1335
+ )
1336
+ )
1337
+ [2023-02-24 14:05:38,848][20735] Worker 0 uses CPU cores [0]
1338
+ [2023-02-24 14:05:38,874][20734] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1339
+ [2023-02-24 14:05:38,874][20734] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
1340
+ [2023-02-24 14:05:38,948][20734] Num visible devices: 1
1341
+ [2023-02-24 14:05:39,017][20737] Worker 2 uses CPU cores [0]
1342
+ [2023-02-24 14:05:39,818][20747] Worker 4 uses CPU cores [0]
1343
+ [2023-02-24 14:05:39,866][20739] Worker 3 uses CPU cores [1]
1344
+ [2023-02-24 14:05:40,106][20741] Worker 1 uses CPU cores [1]
1345
+ [2023-02-24 14:05:40,463][20748] Worker 7 uses CPU cores [1]
1346
+ [2023-02-24 14:05:40,605][20750] Worker 5 uses CPU cores [1]
1347
+ [2023-02-24 14:05:40,683][20753] Worker 6 uses CPU cores [0]
1348
+ [2023-02-24 14:05:43,236][20720] Using optimizer <class 'torch.optim.adam.Adam'>
1349
+ [2023-02-24 14:05:43,237][20720] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
1350
+ [2023-02-24 14:05:43,279][20720] Loading model from checkpoint
1351
+ [2023-02-24 14:05:43,287][20720] Loaded experiment state at self.train_step=978, self.env_steps=4005888
1352
+ [2023-02-24 14:05:43,287][20720] Initialized policy 0 weights for model version 978
1353
+ [2023-02-24 14:05:43,293][20720] Using GPUs [0] for process 0 (actually maps to GPUs [0])
1354
+ [2023-02-24 14:05:43,302][20720] LearnerWorker_p0 finished initialization!
1355
+ [2023-02-24 14:05:43,650][20734] RunningMeanStd input shape: (3, 72, 128)
1356
+ [2023-02-24 14:05:43,652][20734] RunningMeanStd input shape: (1,)
1357
+ [2023-02-24 14:05:43,671][20734] ConvEncoder: input_channels=3
1358
+ [2023-02-24 14:05:43,805][20734] Conv encoder output size: 512
1359
+ [2023-02-24 14:05:43,805][20734] Policy head output size: 512
1360
+ [2023-02-24 14:05:46,152][00980] Inference worker 0-0 is ready!
1361
+ [2023-02-24 14:05:46,154][00980] All inference workers are ready! Signal rollout workers to start!
1362
+ [2023-02-24 14:05:46,278][20747] Doom resolution: 160x120, resize resolution: (128, 72)
1363
+ [2023-02-24 14:05:46,277][20735] Doom resolution: 160x120, resize resolution: (128, 72)
1364
+ [2023-02-24 14:05:46,274][20753] Doom resolution: 160x120, resize resolution: (128, 72)
1365
+ [2023-02-24 14:05:46,298][20737] Doom resolution: 160x120, resize resolution: (128, 72)
1366
+ [2023-02-24 14:05:46,310][20739] Doom resolution: 160x120, resize resolution: (128, 72)
1367
+ [2023-02-24 14:05:46,313][20748] Doom resolution: 160x120, resize resolution: (128, 72)
1368
+ [2023-02-24 14:05:46,317][20750] Doom resolution: 160x120, resize resolution: (128, 72)
1369
+ [2023-02-24 14:05:46,320][20741] Doom resolution: 160x120, resize resolution: (128, 72)
1370
+ [2023-02-24 14:05:47,191][00980] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1371
+ [2023-02-24 14:05:47,495][20747] Decorrelating experience for 0 frames...
1372
+ [2023-02-24 14:05:47,496][20735] Decorrelating experience for 0 frames...
1373
+ [2023-02-24 14:05:47,497][20753] Decorrelating experience for 0 frames...
1374
+ [2023-02-24 14:05:47,497][20750] Decorrelating experience for 0 frames...
1375
+ [2023-02-24 14:05:47,500][20739] Decorrelating experience for 0 frames...
1376
+ [2023-02-24 14:05:47,503][20741] Decorrelating experience for 0 frames...
1377
+ [2023-02-24 14:05:47,857][20741] Decorrelating experience for 32 frames...
1378
+ [2023-02-24 14:05:48,254][20741] Decorrelating experience for 64 frames...
1379
+ [2023-02-24 14:05:48,444][20753] Decorrelating experience for 32 frames...
1380
+ [2023-02-24 14:05:48,461][20735] Decorrelating experience for 32 frames...
1381
+ [2023-02-24 14:05:48,471][20737] Decorrelating experience for 0 frames...
1382
+ [2023-02-24 14:05:48,844][20750] Decorrelating experience for 32 frames...
1383
+ [2023-02-24 14:05:49,216][20737] Decorrelating experience for 32 frames...
1384
+ [2023-02-24 14:05:49,254][20748] Decorrelating experience for 0 frames...
1385
+ [2023-02-24 14:05:49,317][20753] Decorrelating experience for 64 frames...
1386
+ [2023-02-24 14:05:49,417][00980] Heartbeat connected on Batcher_0
1387
+ [2023-02-24 14:05:49,427][00980] Heartbeat connected on LearnerWorker_p0
1388
+ [2023-02-24 14:05:49,469][00980] Heartbeat connected on InferenceWorker_p0-w0
1389
+ [2023-02-24 14:05:50,064][20735] Decorrelating experience for 64 frames...
1390
+ [2023-02-24 14:05:50,153][20753] Decorrelating experience for 96 frames...
1391
+ [2023-02-24 14:05:50,238][00980] Heartbeat connected on RolloutWorker_w6
1392
+ [2023-02-24 14:05:50,333][20748] Decorrelating experience for 32 frames...
1393
+ [2023-02-24 14:05:50,358][20750] Decorrelating experience for 64 frames...
1394
+ [2023-02-24 14:05:50,369][20741] Decorrelating experience for 96 frames...
1395
+ [2023-02-24 14:05:50,673][00980] Heartbeat connected on RolloutWorker_w1
1396
+ [2023-02-24 14:05:51,453][20737] Decorrelating experience for 64 frames...
1397
+ [2023-02-24 14:05:51,472][20747] Decorrelating experience for 32 frames...
1398
+ [2023-02-24 14:05:51,931][20750] Decorrelating experience for 96 frames...
1399
+ [2023-02-24 14:05:52,032][20748] Decorrelating experience for 64 frames...
1400
+ [2023-02-24 14:05:52,195][00980] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1401
+ [2023-02-24 14:05:52,267][00980] Heartbeat connected on RolloutWorker_w5
1402
+ [2023-02-24 14:05:53,434][20735] Decorrelating experience for 96 frames...
1403
+ [2023-02-24 14:05:53,617][20737] Decorrelating experience for 96 frames...
1404
+ [2023-02-24 14:05:53,926][00980] Heartbeat connected on RolloutWorker_w0
1405
+ [2023-02-24 14:05:54,196][00980] Heartbeat connected on RolloutWorker_w2
1406
+ [2023-02-24 14:05:54,491][20747] Decorrelating experience for 64 frames...
1407
+ [2023-02-24 14:05:54,847][20748] Decorrelating experience for 96 frames...
1408
+ [2023-02-24 14:05:55,791][00980] Heartbeat connected on RolloutWorker_w7
1409
+ [2023-02-24 14:05:57,191][00980] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 152.4. Samples: 1524. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
1410
+ [2023-02-24 14:05:57,201][00980] Avg episode reward: [(0, '2.762')]
1411
+ [2023-02-24 14:05:57,549][20720] Signal inference workers to stop experience collection...
1412
+ [2023-02-24 14:05:57,572][20739] Decorrelating experience for 32 frames...
1413
+ [2023-02-24 14:05:57,574][20734] InferenceWorker_p0-w0: stopping experience collection
1414
+ [2023-02-24 14:05:58,375][20747] Decorrelating experience for 96 frames...
1415
+ [2023-02-24 14:05:58,585][00980] Heartbeat connected on RolloutWorker_w4
1416
+ [2023-02-24 14:05:58,843][20739] Decorrelating experience for 64 frames...
1417
+ [2023-02-24 14:05:59,511][20739] Decorrelating experience for 96 frames...
1418
+ [2023-02-24 14:05:59,622][00980] Heartbeat connected on RolloutWorker_w3
1419
+ [2023-02-24 14:06:00,370][20720] Signal inference workers to resume experience collection...
1420
+ [2023-02-24 14:06:00,371][20734] InferenceWorker_p0-w0: resuming experience collection
1421
+ [2023-02-24 14:06:00,372][20720] Stopping Batcher_0...
1422
+ [2023-02-24 14:06:00,373][20720] Loop batcher_evt_loop terminating...
1423
+ [2023-02-24 14:06:00,398][00980] Component Batcher_0 stopped!
1424
+ [2023-02-24 14:06:00,464][20734] Weights refcount: 2 0
1425
+ [2023-02-24 14:06:00,467][20734] Stopping InferenceWorker_p0-w0...
1426
+ [2023-02-24 14:06:00,467][00980] Component InferenceWorker_p0-w0 stopped!
1427
+ [2023-02-24 14:06:00,467][20734] Loop inference_proc0-0_evt_loop terminating...
1428
+ [2023-02-24 14:06:00,567][20747] Stopping RolloutWorker_w4...
1429
+ [2023-02-24 14:06:00,575][20747] Loop rollout_proc4_evt_loop terminating...
1430
+ [2023-02-24 14:06:00,571][00980] Component RolloutWorker_w4 stopped!
1431
+ [2023-02-24 14:06:00,580][20753] Stopping RolloutWorker_w6...
1432
+ [2023-02-24 14:06:00,581][20753] Loop rollout_proc6_evt_loop terminating...
1433
+ [2023-02-24 14:06:00,581][00980] Component RolloutWorker_w6 stopped!
1434
+ [2023-02-24 14:06:00,585][20737] Stopping RolloutWorker_w2...
1435
+ [2023-02-24 14:06:00,585][20737] Loop rollout_proc2_evt_loop terminating...
1436
+ [2023-02-24 14:06:00,588][00980] Component RolloutWorker_w2 stopped!
1437
+ [2023-02-24 14:06:00,594][20735] Stopping RolloutWorker_w0...
1438
+ [2023-02-24 14:06:00,595][00980] Component RolloutWorker_w0 stopped!
1439
+ [2023-02-24 14:06:00,594][20735] Loop rollout_proc0_evt_loop terminating...
1440
+ [2023-02-24 14:06:00,623][00980] Component RolloutWorker_w7 stopped!
1441
+ [2023-02-24 14:06:00,629][20748] Stopping RolloutWorker_w7...
1442
+ [2023-02-24 14:06:00,630][20748] Loop rollout_proc7_evt_loop terminating...
1443
+ [2023-02-24 14:06:00,659][00980] Component RolloutWorker_w1 stopped!
1444
+ [2023-02-24 14:06:00,664][00980] Component RolloutWorker_w5 stopped!
1445
+ [2023-02-24 14:06:00,668][20750] Stopping RolloutWorker_w5...
1446
+ [2023-02-24 14:06:00,669][20750] Loop rollout_proc5_evt_loop terminating...
1447
+ [2023-02-24 14:06:00,670][20741] Stopping RolloutWorker_w1...
1448
+ [2023-02-24 14:06:00,670][20741] Loop rollout_proc1_evt_loop terminating...
1449
+ [2023-02-24 14:06:00,699][00980] Component RolloutWorker_w3 stopped!
1450
+ [2023-02-24 14:06:00,710][20739] Stopping RolloutWorker_w3...
1451
+ [2023-02-24 14:06:00,710][20739] Loop rollout_proc3_evt_loop terminating...
1452
+ [2023-02-24 14:06:03,543][20720] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000980_4014080.pth...
1453
+ [2023-02-24 14:06:03,663][20720] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000871_3567616.pth
1454
+ [2023-02-24 14:06:03,677][20720] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000980_4014080.pth...
1455
+ [2023-02-24 14:06:03,858][20720] Stopping LearnerWorker_p0...
1456
+ [2023-02-24 14:06:03,859][20720] Loop learner_proc0_evt_loop terminating...
1457
+ [2023-02-24 14:06:03,858][00980] Component LearnerWorker_p0 stopped!
1458
+ [2023-02-24 14:06:03,869][00980] Waiting for process learner_proc0 to stop...
1459
+ [2023-02-24 14:06:04,891][00980] Waiting for process inference_proc0-0 to join...
1460
+ [2023-02-24 14:06:04,893][00980] Waiting for process rollout_proc0 to join...
1461
+ [2023-02-24 14:06:04,896][00980] Waiting for process rollout_proc1 to join...
1462
+ [2023-02-24 14:06:04,901][00980] Waiting for process rollout_proc2 to join...
1463
+ [2023-02-24 14:06:04,902][00980] Waiting for process rollout_proc3 to join...
1464
+ [2023-02-24 14:06:04,904][00980] Waiting for process rollout_proc4 to join...
1465
+ [2023-02-24 14:06:04,909][00980] Waiting for process rollout_proc5 to join...
1466
+ [2023-02-24 14:06:04,911][00980] Waiting for process rollout_proc6 to join...
1467
+ [2023-02-24 14:06:04,913][00980] Waiting for process rollout_proc7 to join...
1468
+ [2023-02-24 14:06:04,914][00980] Batcher 0 profile tree view:
1469
+ batching: 0.0456, releasing_batches: 0.0011
1470
+ [2023-02-24 14:06:04,916][00980] InferenceWorker_p0-w0 profile tree view:
1471
+ wait_policy: 0.0051
1472
+ wait_policy_total: 7.3640
1473
+ update_model: 0.0356
1474
+ weight_update: 0.0127
1475
+ one_step: 0.0326
1476
+ handle_policy_step: 3.9057
1477
+ deserialize: 0.0505, stack: 0.0081, obs_to_device_normalize: 0.3641, forward: 3.0388, send_messages: 0.0944
1478
+ prepare_outputs: 0.2652
1479
+ to_cpu: 0.1469
1480
+ [2023-02-24 14:06:04,917][00980] Learner 0 profile tree view:
1481
+ misc: 0.0000, prepare_batch: 8.0217
1482
+ train: 1.7323
1483
+ epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0005, kl_divergence: 0.0026, after_optimizer: 0.0345
1484
+ calculate_losses: 0.2408
1485
+ losses_init: 0.0000, forward_head: 0.1146, bptt_initial: 0.0866, tail: 0.0014, advantages_returns: 0.0010, losses: 0.0318
1486
+ bptt: 0.0049
1487
+ bptt_forward_core: 0.0048
1488
+ update: 1.4525
1489
+ clip: 0.0120
1490
+ [2023-02-24 14:06:04,918][00980] RolloutWorker_w0 profile tree view:
1491
+ wait_for_trajectories: 0.0005, enqueue_policy_requests: 0.7739, env_step: 2.6918, overhead: 0.0454, complete_rollouts: 0.0249
1492
+ save_policy_outputs: 0.0684
1493
+ split_output_tensors: 0.0449
1494
+ [2023-02-24 14:06:04,920][00980] RolloutWorker_w7 profile tree view:
1495
+ wait_for_trajectories: 0.0015, enqueue_policy_requests: 0.2734, env_step: 1.2700, overhead: 0.0664, complete_rollouts: 0.0008
1496
+ save_policy_outputs: 0.0364
1497
+ split_output_tensors: 0.0053
1498
+ [2023-02-24 14:06:04,922][00980] Loop Runner_EvtLoop terminating...
1499
+ [2023-02-24 14:06:04,924][00980] Runner profile tree view:
1500
+ main_loop: 35.4650
1501
+ [2023-02-24 14:06:04,927][00980] Collected {0: 4014080}, FPS: 231.0
1502
+ [2023-02-24 14:06:04,960][00980] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1503
+ [2023-02-24 14:06:04,963][00980] Overriding arg 'num_workers' with value 1 passed from command line
1504
+ [2023-02-24 14:06:04,964][00980] Adding new argument 'no_render'=True that is not in the saved config file!
1505
+ [2023-02-24 14:06:04,966][00980] Adding new argument 'save_video'=True that is not in the saved config file!
1506
+ [2023-02-24 14:06:04,971][00980] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1507
+ [2023-02-24 14:06:04,972][00980] Adding new argument 'video_name'=None that is not in the saved config file!
1508
+ [2023-02-24 14:06:04,976][00980] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
1509
+ [2023-02-24 14:06:04,977][00980] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1510
+ [2023-02-24 14:06:04,980][00980] Adding new argument 'push_to_hub'=False that is not in the saved config file!
1511
+ [2023-02-24 14:06:04,982][00980] Adding new argument 'hf_repository'=None that is not in the saved config file!
1512
+ [2023-02-24 14:06:04,984][00980] Adding new argument 'policy_index'=0 that is not in the saved config file!
1513
+ [2023-02-24 14:06:04,987][00980] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1514
+ [2023-02-24 14:06:04,989][00980] Adding new argument 'train_script'=None that is not in the saved config file!
1515
+ [2023-02-24 14:06:04,990][00980] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1516
+ [2023-02-24 14:06:04,991][00980] Using frameskip 1 and render_action_repeat=4 for evaluation
1517
+ [2023-02-24 14:06:05,021][00980] RunningMeanStd input shape: (3, 72, 128)
1518
+ [2023-02-24 14:06:05,024][00980] RunningMeanStd input shape: (1,)
1519
+ [2023-02-24 14:06:05,042][00980] ConvEncoder: input_channels=3
1520
+ [2023-02-24 14:06:05,093][00980] Conv encoder output size: 512
1521
+ [2023-02-24 14:06:05,095][00980] Policy head output size: 512
1522
+ [2023-02-24 14:06:05,123][00980] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000980_4014080.pth...
1523
+ [2023-02-24 14:06:05,565][00980] Num frames 100...
1524
+ [2023-02-24 14:06:05,685][00980] Num frames 200...
1525
+ [2023-02-24 14:06:05,798][00980] Num frames 300...
1526
+ [2023-02-24 14:06:05,912][00980] Num frames 400...
1527
+ [2023-02-24 14:06:06,025][00980] Num frames 500...
1528
+ [2023-02-24 14:06:06,142][00980] Num frames 600...
1529
+ [2023-02-24 14:06:06,254][00980] Num frames 700...
1530
+ [2023-02-24 14:06:06,363][00980] Num frames 800...
1531
+ [2023-02-24 14:06:06,480][00980] Num frames 900...
1532
+ [2023-02-24 14:06:06,611][00980] Num frames 1000...
1533
+ [2023-02-24 14:06:06,767][00980] Avg episode rewards: #0: 22.880, true rewards: #0: 10.880
1534
+ [2023-02-24 14:06:06,770][00980] Avg episode reward: 22.880, avg true_objective: 10.880
1535
+ [2023-02-24 14:06:06,788][00980] Num frames 1100...
1536
+ [2023-02-24 14:06:06,898][00980] Num frames 1200...
1537
+ [2023-02-24 14:06:07,011][00980] Num frames 1300...
1538
+ [2023-02-24 14:06:07,122][00980] Num frames 1400...
1539
+ [2023-02-24 14:06:07,234][00980] Num frames 1500...
1540
+ [2023-02-24 14:06:07,364][00980] Num frames 1600...
1541
+ [2023-02-24 14:06:07,487][00980] Num frames 1700...
1542
+ [2023-02-24 14:06:07,603][00980] Num frames 1800...
1543
+ [2023-02-24 14:06:07,718][00980] Num frames 1900...
1544
+ [2023-02-24 14:06:07,835][00980] Num frames 2000...
1545
+ [2023-02-24 14:06:07,949][00980] Num frames 2100...
1546
+ [2023-02-24 14:06:08,032][00980] Avg episode rewards: #0: 23.120, true rewards: #0: 10.620
1547
+ [2023-02-24 14:06:08,034][00980] Avg episode reward: 23.120, avg true_objective: 10.620
1548
+ [2023-02-24 14:06:08,123][00980] Num frames 2200...
1549
+ [2023-02-24 14:06:08,238][00980] Num frames 2300...
1550
+ [2023-02-24 14:06:08,364][00980] Num frames 2400...
1551
+ [2023-02-24 14:06:08,483][00980] Num frames 2500...
1552
+ [2023-02-24 14:06:08,607][00980] Num frames 2600...
1553
+ [2023-02-24 14:06:08,738][00980] Num frames 2700...
1554
+ [2023-02-24 14:06:08,854][00980] Num frames 2800...
1555
+ [2023-02-24 14:06:08,970][00980] Num frames 2900...
1556
+ [2023-02-24 14:06:09,084][00980] Num frames 3000...
1557
+ [2023-02-24 14:06:09,201][00980] Num frames 3100...
1558
+ [2023-02-24 14:06:09,319][00980] Num frames 3200...
1559
+ [2023-02-24 14:06:09,437][00980] Num frames 3300...
1560
+ [2023-02-24 14:06:09,559][00980] Num frames 3400...
1561
+ [2023-02-24 14:06:09,674][00980] Num frames 3500...
1562
+ [2023-02-24 14:06:09,795][00980] Num frames 3600...
1563
+ [2023-02-24 14:06:09,910][00980] Num frames 3700...
1564
+ [2023-02-24 14:06:10,035][00980] Num frames 3800...
1565
+ [2023-02-24 14:06:10,160][00980] Num frames 3900...
1566
+ [2023-02-24 14:06:10,281][00980] Num frames 4000...
1567
+ [2023-02-24 14:06:10,443][00980] Avg episode rewards: #0: 31.307, true rewards: #0: 13.640
1568
+ [2023-02-24 14:06:10,444][00980] Avg episode reward: 31.307, avg true_objective: 13.640
1569
+ [2023-02-24 14:06:10,460][00980] Num frames 4100...
1570
+ [2023-02-24 14:06:10,583][00980] Num frames 4200...
1571
+ [2023-02-24 14:06:10,703][00980] Num frames 4300...
1572
+ [2023-02-24 14:06:10,816][00980] Num frames 4400...
1573
+ [2023-02-24 14:06:10,934][00980] Num frames 4500...
1574
+ [2023-02-24 14:06:11,046][00980] Num frames 4600...
1575
+ [2023-02-24 14:06:11,171][00980] Num frames 4700...
1576
+ [2023-02-24 14:06:11,286][00980] Num frames 4800...
1577
+ [2023-02-24 14:06:11,389][00980] Avg episode rewards: #0: 26.857, true rewards: #0: 12.107
1578
+ [2023-02-24 14:06:11,392][00980] Avg episode reward: 26.857, avg true_objective: 12.107
1579
+ [2023-02-24 14:06:11,458][00980] Num frames 4900...
1580
+ [2023-02-24 14:06:11,579][00980] Num frames 5000...
1581
+ [2023-02-24 14:06:11,692][00980] Num frames 5100...
1582
+ [2023-02-24 14:06:11,808][00980] Num frames 5200...
1583
+ [2023-02-24 14:06:11,922][00980] Num frames 5300...
1584
+ [2023-02-24 14:06:12,040][00980] Num frames 5400...
1585
+ [2023-02-24 14:06:12,155][00980] Num frames 5500...
1586
+ [2023-02-24 14:06:12,306][00980] Avg episode rewards: #0: 24.558, true rewards: #0: 11.158
1587
+ [2023-02-24 14:06:12,308][00980] Avg episode reward: 24.558, avg true_objective: 11.158
1588
+ [2023-02-24 14:06:12,333][00980] Num frames 5600...
1589
+ [2023-02-24 14:06:12,453][00980] Num frames 5700...
1590
+ [2023-02-24 14:06:12,571][00980] Num frames 5800...
1591
+ [2023-02-24 14:06:12,692][00980] Num frames 5900...
1592
+ [2023-02-24 14:06:12,805][00980] Num frames 6000...
1593
+ [2023-02-24 14:06:12,925][00980] Num frames 6100...
1594
+ [2023-02-24 14:06:13,040][00980] Num frames 6200...
1595
+ [2023-02-24 14:06:13,152][00980] Num frames 6300...
1596
+ [2023-02-24 14:06:13,263][00980] Num frames 6400...
1597
+ [2023-02-24 14:06:13,378][00980] Num frames 6500...
1598
+ [2023-02-24 14:06:13,492][00980] Num frames 6600...
1599
+ [2023-02-24 14:06:13,622][00980] Num frames 6700...
1600
+ [2023-02-24 14:06:13,713][00980] Avg episode rewards: #0: 25.052, true rewards: #0: 11.218
1601
+ [2023-02-24 14:06:13,718][00980] Avg episode reward: 25.052, avg true_objective: 11.218
1602
+ [2023-02-24 14:06:13,801][00980] Num frames 6800...
1603
+ [2023-02-24 14:06:13,913][00980] Num frames 6900...
1604
+ [2023-02-24 14:06:14,031][00980] Num frames 7000...
1605
+ [2023-02-24 14:06:14,144][00980] Num frames 7100...
1606
+ [2023-02-24 14:06:14,264][00980] Num frames 7200...
1607
+ [2023-02-24 14:06:14,407][00980] Num frames 7300...
1608
+ [2023-02-24 14:06:14,587][00980] Num frames 7400...
1609
+ [2023-02-24 14:06:14,653][00980] Avg episode rewards: #0: 23.147, true rewards: #0: 10.576
1610
+ [2023-02-24 14:06:14,655][00980] Avg episode reward: 23.147, avg true_objective: 10.576
1611
+ [2023-02-24 14:06:14,815][00980] Num frames 7500...
1612
+ [2023-02-24 14:06:14,976][00980] Num frames 7600...
1613
+ [2023-02-24 14:06:15,133][00980] Num frames 7700...
1614
+ [2023-02-24 14:06:15,299][00980] Num frames 7800...
1615
+ [2023-02-24 14:06:15,451][00980] Num frames 7900...
1616
+ [2023-02-24 14:06:15,614][00980] Num frames 8000...
1617
+ [2023-02-24 14:06:15,775][00980] Num frames 8100...
1618
+ [2023-02-24 14:06:15,937][00980] Num frames 8200...
1619
+ [2023-02-24 14:06:16,099][00980] Num frames 8300...
1620
+ [2023-02-24 14:06:16,250][00980] Avg episode rewards: #0: 23.198, true rewards: #0: 10.447
1621
+ [2023-02-24 14:06:16,255][00980] Avg episode reward: 23.198, avg true_objective: 10.447
1622
+ [2023-02-24 14:06:16,325][00980] Num frames 8400...
1623
+ [2023-02-24 14:06:16,489][00980] Num frames 8500...
1624
+ [2023-02-24 14:06:16,656][00980] Num frames 8600...
1625
+ [2023-02-24 14:06:16,818][00980] Num frames 8700...
1626
+ [2023-02-24 14:06:16,985][00980] Num frames 8800...
1627
+ [2023-02-24 14:06:17,151][00980] Num frames 8900...
1628
+ [2023-02-24 14:06:17,319][00980] Num frames 9000...
1629
+ [2023-02-24 14:06:17,482][00980] Num frames 9100...
1630
+ [2023-02-24 14:06:17,648][00980] Num frames 9200...
1631
+ [2023-02-24 14:06:17,812][00980] Num frames 9300...
1632
+ [2023-02-24 14:06:17,974][00980] Num frames 9400...
1633
+ [2023-02-24 14:06:18,116][00980] Num frames 9500...
1634
+ [2023-02-24 14:06:18,261][00980] Avg episode rewards: #0: 23.638, true rewards: #0: 10.638
1635
+ [2023-02-24 14:06:18,262][00980] Avg episode reward: 23.638, avg true_objective: 10.638
1636
+ [2023-02-24 14:06:18,294][00980] Num frames 9600...
1637
+ [2023-02-24 14:06:18,410][00980] Num frames 9700...
1638
+ [2023-02-24 14:06:18,527][00980] Num frames 9800...
1639
+ [2023-02-24 14:06:18,644][00980] Num frames 9900...
1640
+ [2023-02-24 14:06:18,775][00980] Num frames 10000...
1641
+ [2023-02-24 14:06:18,887][00980] Num frames 10100...
1642
+ [2023-02-24 14:06:18,997][00980] Num frames 10200...
1643
+ [2023-02-24 14:06:19,079][00980] Avg episode rewards: #0: 22.522, true rewards: #0: 10.222
1644
+ [2023-02-24 14:06:19,080][00980] Avg episode reward: 22.522, avg true_objective: 10.222
1645
+ [2023-02-24 14:07:20,449][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1646
+ [2023-02-24 14:07:20,479][00980] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1647
+ [2023-02-24 14:07:20,481][00980] Overriding arg 'num_workers' with value 1 passed from command line
1648
+ [2023-02-24 14:07:20,482][00980] Adding new argument 'no_render'=True that is not in the saved config file!
1649
+ [2023-02-24 14:07:20,485][00980] Adding new argument 'save_video'=True that is not in the saved config file!
1650
+ [2023-02-24 14:07:20,486][00980] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1651
+ [2023-02-24 14:07:20,487][00980] Adding new argument 'video_name'=None that is not in the saved config file!
1652
+ [2023-02-24 14:07:20,488][00980] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1653
+ [2023-02-24 14:07:20,490][00980] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1654
+ [2023-02-24 14:07:20,491][00980] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1655
+ [2023-02-24 14:07:20,492][00980] Adding new argument 'hf_repository'='mnavas/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1656
+ [2023-02-24 14:07:20,493][00980] Adding new argument 'policy_index'=0 that is not in the saved config file!
1657
+ [2023-02-24 14:07:20,494][00980] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1658
+ [2023-02-24 14:07:20,495][00980] Adding new argument 'train_script'=None that is not in the saved config file!
1659
+ [2023-02-24 14:07:20,496][00980] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1660
+ [2023-02-24 14:07:20,498][00980] Using frameskip 1 and render_action_repeat=4 for evaluation
1661
+ [2023-02-24 14:07:20,521][00980] RunningMeanStd input shape: (3, 72, 128)
1662
+ [2023-02-24 14:07:20,526][00980] RunningMeanStd input shape: (1,)
1663
+ [2023-02-24 14:07:20,541][00980] ConvEncoder: input_channels=3
1664
+ [2023-02-24 14:07:20,579][00980] Conv encoder output size: 512
1665
+ [2023-02-24 14:07:20,580][00980] Policy head output size: 512
1666
+ [2023-02-24 14:07:20,603][00980] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000980_4014080.pth...
1667
+ [2023-02-24 14:07:21,046][00980] Num frames 100...
1668
+ [2023-02-24 14:07:21,160][00980] Num frames 200...
1669
+ [2023-02-24 14:07:21,286][00980] Num frames 300...
1670
+ [2023-02-24 14:07:21,417][00980] Num frames 400...
1671
+ [2023-02-24 14:07:21,535][00980] Num frames 500...
1672
+ [2023-02-24 14:07:21,654][00980] Num frames 600...
1673
+ [2023-02-24 14:07:21,774][00980] Num frames 700...
1674
+ [2023-02-24 14:07:21,897][00980] Num frames 800...
1675
+ [2023-02-24 14:07:22,009][00980] Num frames 900...
1676
+ [2023-02-24 14:07:22,126][00980] Num frames 1000...
1677
+ [2023-02-24 14:07:22,242][00980] Num frames 1100...
1678
+ [2023-02-24 14:07:22,360][00980] Num frames 1200...
1679
+ [2023-02-24 14:07:22,476][00980] Num frames 1300...
1680
+ [2023-02-24 14:07:22,587][00980] Num frames 1400...
1681
+ [2023-02-24 14:07:22,688][00980] Avg episode rewards: #0: 38.400, true rewards: #0: 14.400
1682
+ [2023-02-24 14:07:22,690][00980] Avg episode reward: 38.400, avg true_objective: 14.400
1683
+ [2023-02-24 14:07:22,761][00980] Num frames 1500...
1684
+ [2023-02-24 14:07:22,884][00980] Num frames 1600...
1685
+ [2023-02-24 14:07:22,997][00980] Num frames 1700...
1686
+ [2023-02-24 14:07:23,113][00980] Num frames 1800...
1687
+ [2023-02-24 14:07:23,225][00980] Num frames 1900...
1688
+ [2023-02-24 14:07:23,350][00980] Num frames 2000...
1689
+ [2023-02-24 14:07:23,465][00980] Num frames 2100...
1690
+ [2023-02-24 14:07:23,585][00980] Num frames 2200...
1691
+ [2023-02-24 14:07:23,706][00980] Num frames 2300...
1692
+ [2023-02-24 14:07:23,820][00980] Num frames 2400...
1693
+ [2023-02-24 14:07:23,943][00980] Num frames 2500...
1694
+ [2023-02-24 14:07:24,060][00980] Num frames 2600...
1695
+ [2023-02-24 14:07:24,180][00980] Num frames 2700...
1696
+ [2023-02-24 14:07:24,295][00980] Num frames 2800...
1697
+ [2023-02-24 14:07:24,437][00980] Avg episode rewards: #0: 39.320, true rewards: #0: 14.320
1698
+ [2023-02-24 14:07:24,439][00980] Avg episode reward: 39.320, avg true_objective: 14.320
1699
+ [2023-02-24 14:07:24,483][00980] Num frames 2900...
1700
+ [2023-02-24 14:07:24,593][00980] Num frames 3000...
1701
+ [2023-02-24 14:07:24,707][00980] Num frames 3100...
1702
+ [2023-02-24 14:07:24,818][00980] Num frames 3200...
1703
+ [2023-02-24 14:07:24,931][00980] Num frames 3300...
1704
+ [2023-02-24 14:07:25,050][00980] Num frames 3400...
1705
+ [2023-02-24 14:07:25,172][00980] Num frames 3500...
1706
+ [2023-02-24 14:07:25,297][00980] Num frames 3600...
1707
+ [2023-02-24 14:07:25,451][00980] Num frames 3700...
1708
+ [2023-02-24 14:07:25,657][00980] Avg episode rewards: #0: 32.650, true rewards: #0: 12.650
1709
+ [2023-02-24 14:07:25,659][00980] Avg episode reward: 32.650, avg true_objective: 12.650
1710
+ [2023-02-24 14:07:25,673][00980] Num frames 3800...
1711
+ [2023-02-24 14:07:25,833][00980] Num frames 3900...
1712
+ [2023-02-24 14:07:25,993][00980] Num frames 4000...
1713
+ [2023-02-24 14:07:26,148][00980] Num frames 4100...
1714
+ [2023-02-24 14:07:26,308][00980] Num frames 4200...
1715
+ [2023-02-24 14:07:26,444][00980] Avg episode rewards: #0: 26.877, true rewards: #0: 10.627
1716
+ [2023-02-24 14:07:26,446][00980] Avg episode reward: 26.877, avg true_objective: 10.627
1717
+ [2023-02-24 14:07:26,529][00980] Num frames 4300...
1718
+ [2023-02-24 14:07:26,686][00980] Num frames 4400...
1719
+ [2023-02-24 14:07:26,847][00980] Num frames 4500...
1720
+ [2023-02-24 14:07:27,009][00980] Num frames 4600...
1721
+ [2023-02-24 14:07:27,168][00980] Num frames 4700...
1722
+ [2023-02-24 14:07:27,331][00980] Num frames 4800...
1723
+ [2023-02-24 14:07:27,483][00980] Avg episode rewards: #0: 24.118, true rewards: #0: 9.718
1724
+ [2023-02-24 14:07:27,485][00980] Avg episode reward: 24.118, avg true_objective: 9.718
1725
+ [2023-02-24 14:07:27,552][00980] Num frames 4900...
1726
+ [2023-02-24 14:07:27,730][00980] Num frames 5000...
1727
+ [2023-02-24 14:07:27,901][00980] Num frames 5100...
1728
+ [2023-02-24 14:07:28,066][00980] Num frames 5200...
1729
+ [2023-02-24 14:07:28,232][00980] Num frames 5300...
1730
+ [2023-02-24 14:07:28,400][00980] Num frames 5400...
1731
+ [2023-02-24 14:07:28,564][00980] Num frames 5500...
1732
+ [2023-02-24 14:07:28,733][00980] Num frames 5600...
1733
+ [2023-02-24 14:07:28,903][00980] Num frames 5700...
1734
+ [2023-02-24 14:07:29,022][00980] Num frames 5800...
1735
+ [2023-02-24 14:07:29,134][00980] Num frames 5900...
1736
+ [2023-02-24 14:07:29,251][00980] Num frames 6000...
1737
+ [2023-02-24 14:07:29,362][00980] Num frames 6100...
1738
+ [2023-02-24 14:07:29,475][00980] Num frames 6200...
1739
+ [2023-02-24 14:07:29,592][00980] Num frames 6300...
1740
+ [2023-02-24 14:07:29,711][00980] Num frames 6400...
1741
+ [2023-02-24 14:07:29,826][00980] Num frames 6500...
1742
+ [2023-02-24 14:07:29,949][00980] Num frames 6600...
1743
+ [2023-02-24 14:07:30,066][00980] Num frames 6700...
1744
+ [2023-02-24 14:07:30,189][00980] Num frames 6800...
1745
+ [2023-02-24 14:07:30,303][00980] Num frames 6900...
1746
+ [2023-02-24 14:07:30,431][00980] Avg episode rewards: #0: 30.098, true rewards: #0: 11.598
1747
+ [2023-02-24 14:07:30,433][00980] Avg episode reward: 30.098, avg true_objective: 11.598
1748
+ [2023-02-24 14:07:30,484][00980] Num frames 7000...
1749
+ [2023-02-24 14:07:30,609][00980] Num frames 7100...
1750
+ [2023-02-24 14:07:30,725][00980] Num frames 7200...
1751
+ [2023-02-24 14:07:30,843][00980] Num frames 7300...
1752
+ [2023-02-24 14:07:30,958][00980] Num frames 7400...
1753
+ [2023-02-24 14:07:31,078][00980] Num frames 7500...
1754
+ [2023-02-24 14:07:31,202][00980] Num frames 7600...
1755
+ [2023-02-24 14:07:31,320][00980] Num frames 7700...
1756
+ [2023-02-24 14:07:31,437][00980] Num frames 7800...
1757
+ [2023-02-24 14:07:31,556][00980] Num frames 7900...
1758
+ [2023-02-24 14:07:31,679][00980] Num frames 8000...
1759
+ [2023-02-24 14:07:31,799][00980] Num frames 8100...
1760
+ [2023-02-24 14:07:31,926][00980] Num frames 8200...
1761
+ [2023-02-24 14:07:32,015][00980] Avg episode rewards: #0: 29.753, true rewards: #0: 11.753
1762
+ [2023-02-24 14:07:32,016][00980] Avg episode reward: 29.753, avg true_objective: 11.753
1763
+ [2023-02-24 14:07:32,100][00980] Num frames 8300...
1764
+ [2023-02-24 14:07:32,215][00980] Num frames 8400...
1765
+ [2023-02-24 14:07:32,326][00980] Num frames 8500...
1766
+ [2023-02-24 14:07:32,439][00980] Num frames 8600...
1767
+ [2023-02-24 14:07:32,558][00980] Num frames 8700...
1768
+ [2023-02-24 14:07:32,675][00980] Num frames 8800...
1769
+ [2023-02-24 14:07:32,786][00980] Num frames 8900...
1770
+ [2023-02-24 14:07:32,900][00980] Num frames 9000...
1771
+ [2023-02-24 14:07:33,022][00980] Num frames 9100...
1772
+ [2023-02-24 14:07:33,096][00980] Avg episode rewards: #0: 28.519, true rewards: #0: 11.394
1773
+ [2023-02-24 14:07:33,097][00980] Avg episode reward: 28.519, avg true_objective: 11.394
1774
+ [2023-02-24 14:07:33,197][00980] Num frames 9200...
1775
+ [2023-02-24 14:07:33,309][00980] Num frames 9300...
1776
+ [2023-02-24 14:07:33,431][00980] Num frames 9400...
1777
+ [2023-02-24 14:07:33,547][00980] Num frames 9500...
1778
+ [2023-02-24 14:07:33,667][00980] Num frames 9600...
1779
+ [2023-02-24 14:07:33,792][00980] Num frames 9700...
1780
+ [2023-02-24 14:07:33,909][00980] Num frames 9800...
1781
+ [2023-02-24 14:07:34,026][00980] Num frames 9900...
1782
+ [2023-02-24 14:07:34,137][00980] Num frames 10000...
1783
+ [2023-02-24 14:07:34,271][00980] Avg episode rewards: #0: 27.523, true rewards: #0: 11.190
1784
+ [2023-02-24 14:07:34,273][00980] Avg episode reward: 27.523, avg true_objective: 11.190
1785
+ [2023-02-24 14:07:34,312][00980] Num frames 10100...
1786
+ [2023-02-24 14:07:34,431][00980] Num frames 10200...
1787
+ [2023-02-24 14:07:34,546][00980] Num frames 10300...
1788
+ [2023-02-24 14:07:34,672][00980] Num frames 10400...
1789
+ [2023-02-24 14:07:34,785][00980] Num frames 10500...
1790
+ [2023-02-24 14:07:34,907][00980] Num frames 10600...
1791
+ [2023-02-24 14:07:35,024][00980] Num frames 10700...
1792
+ [2023-02-24 14:07:35,142][00980] Num frames 10800...
1793
+ [2023-02-24 14:07:35,255][00980] Num frames 10900...
1794
+ [2023-02-24 14:07:35,378][00980] Num frames 11000...
1795
+ [2023-02-24 14:07:35,489][00980] Num frames 11100...
1796
+ [2023-02-24 14:07:35,614][00980] Num frames 11200...
1797
+ [2023-02-24 14:07:35,734][00980] Num frames 11300...
1798
+ [2023-02-24 14:07:35,852][00980] Avg episode rewards: #0: 27.851, true rewards: #0: 11.351
1799
+ [2023-02-24 14:07:35,853][00980] Avg episode reward: 27.851, avg true_objective: 11.351
1800
+ [2023-02-24 14:08:43,682][00980] Replay video saved to /content/train_dir/default_experiment/replay.mp4!