Model save
Browse files
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
model-index:
|
14 |
+
- name: vit-base-patch16-224-in21k-FINALLaneClassifier-VIT50epochsAUGMENTED
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value:
|
29 |
+
accuracy: 1.0
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value:
|
33 |
+
f1: 1.0
|
34 |
+
- name: Precision
|
35 |
+
type: precision
|
36 |
+
value:
|
37 |
+
precision: 1.0
|
38 |
+
- name: Recall
|
39 |
+
type: recall
|
40 |
+
value:
|
41 |
+
recall: 1.0
|
42 |
+
---
|
43 |
+
|
44 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
45 |
+
should probably proofread and complete it, then remove this comment. -->
|
46 |
+
|
47 |
+
# vit-base-patch16-224-in21k-FINALLaneClassifier-VIT50epochsAUGMENTED
|
48 |
+
|
49 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
50 |
+
It achieves the following results on the evaluation set:
|
51 |
+
- Loss: 0.0000
|
52 |
+
- Accuracy: {'accuracy': 1.0}
|
53 |
+
- F1: {'f1': 1.0}
|
54 |
+
- Precision: {'precision': 1.0}
|
55 |
+
- Recall: {'recall': 1.0}
|
56 |
+
|
57 |
+
## Model description
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Intended uses & limitations
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training and evaluation data
|
66 |
+
|
67 |
+
More information needed
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
### Training hyperparameters
|
72 |
+
|
73 |
+
The following hyperparameters were used during training:
|
74 |
+
- learning_rate: 5e-05
|
75 |
+
- train_batch_size: 32
|
76 |
+
- eval_batch_size: 32
|
77 |
+
- seed: 42
|
78 |
+
- gradient_accumulation_steps: 4
|
79 |
+
- total_train_batch_size: 128
|
80 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
81 |
+
- lr_scheduler_type: linear
|
82 |
+
- lr_scheduler_warmup_ratio: 0.1
|
83 |
+
- num_epochs: 50
|
84 |
+
|
85 |
+
### Training results
|
86 |
+
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
88 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
|
89 |
+
| 0.0297 | 0.9981 | 392 | 0.0204 | {'accuracy': 0.9998408150270615} | {'f1': 0.9998407816167802} | {'precision': 0.9998385012919897} | {'recall': 0.9998431126451208} |
|
90 |
+
| 0.0082 | 1.9987 | 785 | 0.0069 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
91 |
+
| 0.008 | 2.9994 | 1178 | 0.0038 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
92 |
+
| 0.0023 | 4.0 | 1571 | 0.0020 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
93 |
+
| 0.0035 | 4.9981 | 1963 | 0.0031 | {'accuracy': 0.9993632601082458} | {'f1': 0.9993631351350802} | {'precision': 0.9993546305259762} | {'recall': 0.9993724505804833} |
|
94 |
+
| 0.0011 | 5.9987 | 2356 | 0.0007 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
95 |
+
| 0.0013 | 6.9994 | 2749 | 0.0005 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
96 |
+
| 0.0006 | 8.0 | 3142 | 0.0003 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
97 |
+
| 0.001 | 8.9981 | 3534 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
98 |
+
| 0.0002 | 9.9987 | 3927 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
99 |
+
| 0.0004 | 10.9994 | 4320 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
100 |
+
| 0.0001 | 12.0 | 4713 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
101 |
+
| 0.0007 | 12.9981 | 5105 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
102 |
+
| 0.0028 | 13.9987 | 5498 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
103 |
+
| 0.0006 | 14.9994 | 5891 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
104 |
+
| 0.0036 | 16.0 | 6284 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
105 |
+
| 0.0016 | 16.9981 | 6676 | 0.0001 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
106 |
+
| 0.0026 | 17.9987 | 7069 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
107 |
+
| 0.0007 | 18.9994 | 7462 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
108 |
+
| 0.0011 | 20.0 | 7855 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
109 |
+
| 0.0003 | 20.9981 | 8247 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
110 |
+
| 0.0008 | 21.9987 | 8640 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
111 |
+
| 0.0001 | 22.9994 | 9033 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
112 |
+
| 0.0 | 24.0 | 9426 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
113 |
+
| 0.0002 | 24.9981 | 9818 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
114 |
+
| 0.0 | 25.9987 | 10211 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
115 |
+
| 0.0002 | 26.9994 | 10604 | 0.0002 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
116 |
+
| 0.0001 | 28.0 | 10997 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
117 |
+
| 0.0 | 28.9981 | 11389 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
118 |
+
| 0.0002 | 29.9987 | 11782 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
119 |
+
| 0.0001 | 30.9994 | 12175 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
120 |
+
| 0.0004 | 32.0 | 12568 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
121 |
+
| 0.0 | 32.9981 | 12960 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
122 |
+
| 0.002 | 33.9987 | 13353 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
123 |
+
| 0.0 | 34.9994 | 13746 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
124 |
+
| 0.0 | 36.0 | 14139 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
125 |
+
| 0.0001 | 36.9981 | 14531 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
126 |
+
| 0.0 | 37.9987 | 14924 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
127 |
+
| 0.0 | 38.9994 | 15317 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
128 |
+
| 0.0035 | 40.0 | 15710 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
129 |
+
| 0.0002 | 40.9981 | 16102 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
130 |
+
| 0.0 | 41.9987 | 16495 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
131 |
+
| 0.0 | 42.9994 | 16888 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
132 |
+
| 0.0 | 44.0 | 17281 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
133 |
+
| 0.0 | 44.9981 | 17673 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
134 |
+
| 0.0 | 45.9987 | 18066 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
135 |
+
| 0.0 | 46.9994 | 18459 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
136 |
+
| 0.0 | 48.0 | 18852 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
137 |
+
| 0.0 | 48.9981 | 19244 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
138 |
+
| 0.0 | 49.9045 | 19600 | 0.0000 | {'accuracy': 1.0} | {'f1': 1.0} | {'precision': 1.0} | {'recall': 1.0} |
|
139 |
+
|
140 |
+
|
141 |
+
### Framework versions
|
142 |
+
|
143 |
+
- Transformers 4.43.3
|
144 |
+
- Pytorch 2.3.1
|
145 |
+
- Datasets 2.20.0
|
146 |
+
- Tokenizers 0.19.1
|