mmomm25's picture
Model save
8ab1505 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: vit-base-patch16-224-in21k-FINALConcreteClassifier-VIT50epochsAUGMENTED
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 1
          - name: F1
            type: f1
            value:
              f1: 1
          - name: Precision
            type: precision
            value:
              precision: 1
          - name: Recall
            type: recall
            value:
              recall: 1

vit-base-patch16-224-in21k-FINALConcreteClassifier-VIT50epochsAUGMENTED

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: {'accuracy': 1.0}
  • F1: {'f1': 1.0}
  • Precision: {'precision': 1.0}
  • Recall: {'recall': 1.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8388 0.9994 407 0.7311 {'accuracy': 0.9157070474435743} {'f1': 0.917794966875943} {'precision': 0.921646356866348} {'recall': 0.9170296069514275}
0.3038 1.9988 814 0.2005 {'accuracy': 0.9949332105020727} {'f1': 0.9950743368173648} {'precision': 0.9950553355854266} {'recall': 0.9951352438470434}
0.1876 2.9982 1221 0.1047 {'accuracy': 0.9940119760479041} {'f1': 0.9941331065394295} {'precision': 0.9943533048504515} {'recall': 0.993969038215347}
0.1113 4.0 1629 0.0507 {'accuracy': 0.9975433747888838} {'f1': 0.9976395144195634} {'precision': 0.9977092256032858} {'recall': 0.997582948802461}
0.0796 4.9994 2036 0.0309 {'accuracy': 0.9967756794104099} {'f1': 0.9968744828925905} {'precision': 0.9969869308866188} {'recall': 0.996780568599779}
0.083 5.9988 2443 0.0251 {'accuracy': 0.9966221403347152} {'f1': 0.9967738849901814} {'precision': 0.9968774505123108} {'recall': 0.9967275638007345}
0.0571 6.9982 2850 0.0134 {'accuracy': 0.9978504529402733} {'f1': 0.9979500771037213} {'precision': 0.9979377245997445} {'recall': 0.9979754620815722}
0.0422 8.0 3258 0.0114 {'accuracy': 0.9981575310916628} {'f1': 0.998254711081091} {'precision': 0.9982895535805023} {'recall': 0.9982350712572632}
0.0358 8.9994 3665 0.0092 {'accuracy': 0.9978504529402733} {'f1': 0.9979638871067233} {'precision': 0.9979608626797065} {'recall': 0.9979954180985109}
0.0294 9.9988 4072 0.0068 {'accuracy': 0.997389835713189} {'f1': 0.9975489796644634} {'precision': 0.9975481848852183} {'recall': 0.9975538912237429}
0.047 10.9982 4479 0.0059 {'accuracy': 0.9978504529402733} {'f1': 0.9979815213920817} {'precision': 0.9979815455594003} {'recall': 0.9979874356917354}
0.0195 12.0 4887 0.0031 {'accuracy': 0.9995393827729157} {'f1': 0.9995674497361959} {'precision': 0.9995686099728593} {'recall': 0.9995664555320074}
0.0158 12.9994 5294 0.0023 {'accuracy': 0.9996929218486105} {'f1': 0.9997116397752187} {'precision': 0.999710312862109} {'recall': 0.9997136311569301}
0.009 13.9988 5701 0.0036 {'accuracy': 0.9990787655458314} {'f1': 0.9991197992455174} {'precision': 0.9991467576791808} {'recall': 0.9990975295853345}
0.0106 14.9982 6108 0.0025 {'accuracy': 0.9993858436972209} {'f1': 0.9994156462516233} {'precision': 0.999429874572406} {'recall': 0.9994035847694385}
0.0044 16.0 6516 0.0032 {'accuracy': 0.9990787655458314} {'f1': 0.9991348548711563} {'precision': 0.9991467576791808} {'recall': 0.9991289198606272}
0.0286 16.9994 6923 0.0012 {'accuracy': 0.9998464609243052} {'f1': 0.9998479593939164} {'precision': 0.9998569794050343} {'recall': 0.9998391248391248}
0.034 17.9988 7330 0.0019 {'accuracy': 0.9993858436972209} {'f1': 0.9994154220725433} {'precision': 0.9994224590190075} {'recall': 0.99940957157452}
0.0017 18.9982 7737 0.0015 {'accuracy': 0.9996929218486105} {'f1': 0.9996958969308075} {'precision': 0.9997142857142858} {'recall': 0.9996782496782497}
0.0377 20.0 8145 0.0007 {'accuracy': 0.9998464609243052} {'f1': 0.999855816578732} {'precision': 0.9998569794050343} {'recall': 0.9998548199767712}
0.0021 20.9994 8552 0.0008 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0138 21.9988 8959 0.0006 {'accuracy': 0.9998464609243052} {'f1': 0.999855816578732} {'precision': 0.9998569794050343} {'recall': 0.9998548199767712}
0.0086 22.9982 9366 0.0039 {'accuracy': 0.9989252264701366} {'f1': 0.9989828981253953} {'precision': 0.998990938880296} {'recall': 0.9989800183099152}
0.0089 24.0 9774 0.0004 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0064 24.9994 10181 0.0004 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0121 25.9988 10588 0.0013 {'accuracy': 0.9998464609243052} {'f1': 0.9998479593939164} {'precision': 0.9998569794050343} {'recall': 0.9998391248391248}
0.0123 26.9982 10995 0.0003 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0129 28.0 11403 0.0012 {'accuracy': 0.9995393827729157} {'f1': 0.9995674416794638} {'precision': 0.9995719178082192} {'recall': 0.9995644599303136}
0.0143 28.9994 11810 0.0003 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0029 29.9988 12217 0.0030 {'accuracy': 0.9993858436972209} {'f1': 0.9994232496258108} {'precision': 0.999429874572406} {'recall': 0.9994192799070848}
0.0059 30.9982 12624 0.0020 {'accuracy': 0.9996929218486105} {'f1': 0.999703857839045} {'precision': 0.9997142857142858} {'recall': 0.999693944815896}
0.0026 32.0 13032 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0097 32.9994 13439 0.0005 {'accuracy': 0.9996929218486105} {'f1': 0.9997028008868588} {'precision': 0.9996941515963085} {'recall': 0.9997116355552362}
0.0035 33.9988 13846 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0132 34.9982 14253 0.0008 {'accuracy': 0.9996929218486105} {'f1': 0.9997116397752187} {'precision': 0.999710312862109} {'recall': 0.9997136311569301}
0.0011 36.0 14661 0.0029 {'accuracy': 0.9995393827729157} {'f1': 0.9995410021285396} {'precision': 0.9995192307692308} {'recall': 0.9995644599303136}
0.006 36.9994 15068 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0038 37.9988 15475 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0125 38.9982 15882 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.002 40.0 16290 0.0007 {'accuracy': 0.9998464609243052} {'f1': 0.9998479593939164} {'precision': 0.9998569794050343} {'recall': 0.9998391248391248}
0.0017 40.9994 16697 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 41.9988 17104 0.0003 {'accuracy': 0.9998464609243052} {'f1': 0.999855816578732} {'precision': 0.9998569794050343} {'recall': 0.9998548199767712}
0.0069 42.9982 17511 0.0005 {'accuracy': 0.9998464609243052} {'f1': 0.999855816578732} {'precision': 0.9998569794050343} {'recall': 0.9998548199767712}
0.0008 44.0 17919 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0129 44.9994 18326 0.0002 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0184 45.9988 18733 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0003 46.9982 19140 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0095 48.0 19548 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0003 48.9994 19955 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}
0.0002 49.9693 20350 0.0001 {'accuracy': 1.0} {'f1': 1.0} {'precision': 1.0} {'recall': 1.0}

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1