mmcgovern574
commited on
Commit
•
cb3b8de
1
Parent(s):
dc2c417
End of training
Browse files- README.md +16 -36
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,55 +52,35 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
|
|
74 |
-
|
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.1379 | 11.0 | 627 | 0.5374 | 0.83 |
|
80 |
-
| 0.0781 | 12.0 | 684 | 0.6484 | 0.84 |
|
81 |
-
| 0.0337 | 13.0 | 741 | 0.7072 | 0.84 |
|
82 |
-
| 0.0211 | 14.0 | 798 | 0.7023 | 0.83 |
|
83 |
-
| 0.0135 | 15.0 | 855 | 0.8199 | 0.83 |
|
84 |
-
| 0.0097 | 16.0 | 912 | 0.8009 | 0.83 |
|
85 |
-
| 0.065 | 17.0 | 969 | 0.8992 | 0.81 |
|
86 |
-
| 0.0067 | 18.0 | 1026 | 0.8628 | 0.82 |
|
87 |
-
| 0.0118 | 19.0 | 1083 | 0.6922 | 0.85 |
|
88 |
-
| 0.0052 | 20.0 | 1140 | 0.8001 | 0.84 |
|
89 |
-
| 0.077 | 21.0 | 1197 | 0.8324 | 0.82 |
|
90 |
-
| 0.0043 | 22.0 | 1254 | 0.9468 | 0.8 |
|
91 |
-
| 0.0039 | 23.0 | 1311 | 0.8866 | 0.8 |
|
92 |
-
| 0.0696 | 24.0 | 1368 | 0.9424 | 0.82 |
|
93 |
-
| 0.0037 | 25.0 | 1425 | 0.7855 | 0.81 |
|
94 |
-
| 0.0631 | 26.0 | 1482 | 0.7659 | 0.82 |
|
95 |
-
| 0.0592 | 27.0 | 1539 | 0.8605 | 0.83 |
|
96 |
-
| 0.0034 | 28.0 | 1596 | 0.9266 | 0.82 |
|
97 |
-
| 0.0032 | 29.0 | 1653 | 0.9831 | 0.82 |
|
98 |
-
| 0.0032 | 30.0 | 1710 | 1.0178 | 0.81 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
102 |
|
103 |
- Transformers 4.36.2
|
104 |
- Pytorch 2.1.0+cu121
|
105 |
-
- Datasets 2.
|
106 |
- Tokenizers 0.15.0
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.79
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8742
|
36 |
+
- Accuracy: 0.79
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 10
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.2265 | 1.0 | 57 | 2.1424 | 0.41 |
|
70 |
+
| 1.7837 | 2.0 | 114 | 1.6990 | 0.54 |
|
71 |
+
| 1.4838 | 3.0 | 171 | 1.4898 | 0.63 |
|
72 |
+
| 1.3231 | 4.0 | 228 | 1.2616 | 0.7 |
|
73 |
+
| 1.1623 | 5.0 | 285 | 1.1048 | 0.75 |
|
74 |
+
| 1.043 | 6.0 | 342 | 1.0032 | 0.77 |
|
75 |
+
| 0.9029 | 7.0 | 399 | 0.9896 | 0.76 |
|
76 |
+
| 0.8869 | 8.0 | 456 | 0.8895 | 0.81 |
|
77 |
+
| 0.8797 | 9.0 | 513 | 0.8821 | 0.8 |
|
78 |
+
| 0.8542 | 10.0 | 570 | 0.8742 | 0.79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
- Transformers 4.36.2
|
84 |
- Pytorch 2.1.0+cu121
|
85 |
+
- Datasets 2.16.0
|
86 |
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d786989009ef96653a8e0ce50a951864dac4da0208603368b1b90a1cf5e28c60
|
3 |
size 94771728
|