update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- preprocessed1024_config
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: vit-cc-512-birads
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: preprocessed1024_config
|
17 |
+
type: preprocessed1024_config
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value:
|
23 |
+
accuracy: 0.4943467336683417
|
24 |
+
- name: F1
|
25 |
+
type: f1
|
26 |
+
value:
|
27 |
+
f1: 0.3929699341372617
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# vit-cc-512-birads
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 1.1133
|
38 |
+
- Accuracy: {'accuracy': 0.4943467336683417}
|
39 |
+
- F1: {'f1': 0.3929699341372617}
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 8
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 10
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:---------------------------:|
|
70 |
+
| 1.1037 | 1.0 | 796 | 1.0357 | {'accuracy': 0.4748743718592965} | {'f1': 0.21465076660988078} |
|
71 |
+
| 1.0588 | 2.0 | 1592 | 1.0446 | {'accuracy': 0.4623115577889447} | {'f1': 0.33094476503399495} |
|
72 |
+
| 1.0486 | 3.0 | 2388 | 1.0408 | {'accuracy': 0.47361809045226133} | {'f1': 0.3313643442345453} |
|
73 |
+
| 1.0288 | 4.0 | 3184 | 1.0186 | {'accuracy': 0.5050251256281407} | {'f1': 0.3404676010455165} |
|
74 |
+
| 1.0284 | 5.0 | 3980 | 1.0288 | {'accuracy': 0.5037688442211056} | {'f1': 0.3406391773730375} |
|
75 |
+
| 0.997 | 6.0 | 4776 | 1.0183 | {'accuracy': 0.5087939698492462} | {'f1': 0.3539488153998284} |
|
76 |
+
| 0.9682 | 7.0 | 5572 | 1.0965 | {'accuracy': 0.4566582914572864} | {'f1': 0.3695106771946128} |
|
77 |
+
| 0.9313 | 8.0 | 6368 | 1.0554 | {'accuracy': 0.4962311557788945} | {'f1': 0.38158088397057704} |
|
78 |
+
| 0.8938 | 9.0 | 7164 | 1.0930 | {'accuracy': 0.4943467336683417} | {'f1': 0.38196414933207573} |
|
79 |
+
| 0.8697 | 10.0 | 7960 | 1.1133 | {'accuracy': 0.4943467336683417} | {'f1': 0.3929699341372617} |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.20.1
|
85 |
+
- Pytorch 1.12.0
|
86 |
+
- Datasets 2.1.0
|
87 |
+
- Tokenizers 0.12.1
|