osbm commited on
Commit
85e8db9
·
1 Parent(s): 6f3a014

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - preprocessed1024_config
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: vit-cc-512-birads
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: preprocessed1024_config
17
+ type: preprocessed1024_config
18
+ args: default
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value:
23
+ accuracy: 0.4943467336683417
24
+ - name: F1
25
+ type: f1
26
+ value:
27
+ f1: 0.3929699341372617
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # vit-cc-512-birads
34
+
35
+ This model is a fine-tuned version of [](https://huggingface.co/) on the preprocessed1024_config dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 1.1133
38
+ - Accuracy: {'accuracy': 0.4943467336683417}
39
+ - F1: {'f1': 0.3929699341372617}
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
69
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:---------------------------:|
70
+ | 1.1037 | 1.0 | 796 | 1.0357 | {'accuracy': 0.4748743718592965} | {'f1': 0.21465076660988078} |
71
+ | 1.0588 | 2.0 | 1592 | 1.0446 | {'accuracy': 0.4623115577889447} | {'f1': 0.33094476503399495} |
72
+ | 1.0486 | 3.0 | 2388 | 1.0408 | {'accuracy': 0.47361809045226133} | {'f1': 0.3313643442345453} |
73
+ | 1.0288 | 4.0 | 3184 | 1.0186 | {'accuracy': 0.5050251256281407} | {'f1': 0.3404676010455165} |
74
+ | 1.0284 | 5.0 | 3980 | 1.0288 | {'accuracy': 0.5037688442211056} | {'f1': 0.3406391773730375} |
75
+ | 0.997 | 6.0 | 4776 | 1.0183 | {'accuracy': 0.5087939698492462} | {'f1': 0.3539488153998284} |
76
+ | 0.9682 | 7.0 | 5572 | 1.0965 | {'accuracy': 0.4566582914572864} | {'f1': 0.3695106771946128} |
77
+ | 0.9313 | 8.0 | 6368 | 1.0554 | {'accuracy': 0.4962311557788945} | {'f1': 0.38158088397057704} |
78
+ | 0.8938 | 9.0 | 7164 | 1.0930 | {'accuracy': 0.4943467336683417} | {'f1': 0.38196414933207573} |
79
+ | 0.8697 | 10.0 | 7960 | 1.1133 | {'accuracy': 0.4943467336683417} | {'f1': 0.3929699341372617} |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.20.1
85
+ - Pytorch 1.12.0
86
+ - Datasets 2.1.0
87
+ - Tokenizers 0.12.1