riccardomusmeci
commited on
Commit
•
515ee83
1
Parent(s):
d335103
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: mlx-image
|
4 |
+
tags:
|
5 |
+
- mlx
|
6 |
+
- mlx-image
|
7 |
+
- vision
|
8 |
+
- image-classification
|
9 |
+
datasets:
|
10 |
+
- imagenet-1k
|
11 |
+
---
|
12 |
+
# vit_base_patch14_518.dinov2
|
13 |
+
|
14 |
+
A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model trained on ImageNet-1k dataset with [DINOv2](https://arxiv.org/abs/2304.07193).
|
15 |
+
|
16 |
+
The model was trained in self-supervised fashion on ImageNet-1k dataset. No classification head was trained, only the backbone.
|
17 |
+
|
18 |
+
Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.
|
19 |
+
|
20 |
+
<div align="center">
|
21 |
+
<img width="100%" alt="DINO illustration" src="dino.gif">
|
22 |
+
</div>
|
23 |
+
|
24 |
+
|
25 |
+
## How to use
|
26 |
+
```bash
|
27 |
+
pip install mlx-image
|
28 |
+
```
|
29 |
+
|
30 |
+
Here is how to use this model for image classification:
|
31 |
+
|
32 |
+
```python
|
33 |
+
from mlxim.model import create_model
|
34 |
+
from mlxim.io import read_rgb
|
35 |
+
from mlxim.transform import ImageNetTransform
|
36 |
+
|
37 |
+
transform = ImageNetTransform(train=False, img_size=518)
|
38 |
+
x = transform(read_rgb("cat.png"))
|
39 |
+
x = mx.expand_dims(x, 0)
|
40 |
+
|
41 |
+
model = create_model("vit_base_patch14_518.dinov2")
|
42 |
+
model.eval()
|
43 |
+
|
44 |
+
logits, attn_masks = model(x, attn_masks=True)
|
45 |
+
```
|
46 |
+
|
47 |
+
You can also use the embeds from layer before head:
|
48 |
+
```python
|
49 |
+
from mlxim.model import create_model
|
50 |
+
from mlxim.io import read_rgb
|
51 |
+
from mlxim.transform import ImageNetTransform
|
52 |
+
|
53 |
+
transform = ImageNetTransform(train=False, img_size=512)
|
54 |
+
x = transform(read_rgb("cat.png"))
|
55 |
+
x = mx.expand_dims(x, 0)
|
56 |
+
|
57 |
+
# first option
|
58 |
+
model = create_model("vit_base_patch14_518.dinov2", num_classes=0)
|
59 |
+
model.eval()
|
60 |
+
|
61 |
+
embeds = model(x)
|
62 |
+
|
63 |
+
# second option
|
64 |
+
model = create_model("vit_base_patch14_518.dinov2")
|
65 |
+
model.eval()
|
66 |
+
|
67 |
+
embeds, attn_masks = model.get_features(x)
|
68 |
+
```
|
69 |
+
|
70 |
+
## Attention maps
|
71 |
+
You can visualize the attention maps using the `attn_masks` returned by the model. Go check the mlx-image [notebook](https://github.com/riccardomusmeci/mlx-image/notebooks/dino_attention.ipynb).
|
72 |
+
|
73 |
+
<div align="center">
|
74 |
+
<img width="100%" alt="Attention Map" src="attention_maps.png">
|
75 |
+
</div>
|
76 |
+
|