prince-canuma commited on
Commit
e55da8d
1 Parent(s): c798716

Delete processing_phi3_v.py

Browse files
Files changed (1) hide show
  1. processing_phi3_v.py +0 -217
processing_phi3_v.py DELETED
@@ -1,217 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """
17
- Processor class for Phi3-V.
18
- """
19
- import re
20
- from typing import List, Optional, Union
21
-
22
- import torch
23
-
24
- import transformers
25
- from transformers.feature_extraction_utils import BatchFeature
26
- from transformers.image_utils import ImageInput
27
- from transformers.processing_utils import ProcessorMixin
28
- from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
- from transformers.utils import TensorType
30
- from .image_processing_phi3_v import Phi3VImageProcessor
31
- transformers.Phi3VImageProcessor = Phi3VImageProcessor
32
-
33
- class Phi3VProcessor(ProcessorMixin):
34
- r"""
35
- Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
36
-
37
- [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
38
- [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
39
-
40
- Args:
41
- image_processor ([`Phi3VImageProcessor`], *optional*):
42
- The image processor is a required input.
43
- tokenizer ([`LlamaTokenizerFast`], *optional*):
44
- The tokenizer is a required input.
45
- """
46
-
47
- attributes = ["image_processor", "tokenizer"]
48
- image_processor_class = "Phi3VImageProcessor"
49
- tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
50
- special_image_token = "<|image|>"
51
-
52
- def __init__(self, image_processor, tokenizer):
53
- self.image_processor = image_processor
54
- self.tokenizer = tokenizer
55
- self.num_img_tokens = image_processor.num_img_tokens
56
- self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
57
-
58
- def __call__(
59
- self,
60
- text: Union[TextInput, List[TextInput]],
61
- images: ImageInput = None,
62
- padding: Union[bool, str, PaddingStrategy] = False,
63
- truncation: Union[bool, str, TruncationStrategy] = None,
64
- max_length=None,
65
- return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
66
- ) -> BatchFeature:
67
- """
68
- Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
69
- and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
70
- the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
71
- Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
72
- of the above two methods for more information.
73
-
74
- Args:
75
- text (`str`, `List[str]`, `List[List[str]]`):
76
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
77
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
78
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
79
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
80
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
81
- tensor. Both channels-first and channels-last formats are supported.
82
- padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
83
- Select a strategy to pad the returned sequences (according to the model's padding side and padding
84
- index) among:
85
- - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
86
- sequence if provided).
87
- - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
88
- acceptable input length for the model if that argument is not provided.
89
- - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
90
- lengths).
91
- max_length (`int`, *optional*):
92
- Maximum length of the returned list and optionally padding length (see above).
93
- truncation (`bool`, *optional*):
94
- Activates truncation to cut input sequences longer than `max_length` to `max_length`.
95
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
96
- If set, will return tensors of a particular framework. Acceptable values are:
97
-
98
- - `'tf'`: Return TensorFlow `tf.constant` objects.
99
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
100
- - `'np'`: Return NumPy `np.ndarray` objects.
101
- - `'jax'`: Return JAX `jnp.ndarray` objects.
102
-
103
- Returns:
104
- [`BatchFeature`]: A [`BatchFeature`] with the following fields:
105
-
106
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
107
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
108
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
109
- `None`).
110
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
111
- """
112
- if images is not None:
113
- image_inputs = self.image_processor(images, return_tensors=return_tensors)
114
- else:
115
- image_inputs = {}
116
- inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
117
- return inputs
118
-
119
- def calc_num_image_tokens(self, images: ImageInput):
120
- """ Calculate the number of image tokens for each image.
121
- Args:
122
- images (`ImageInput`):
123
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
124
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
125
- """
126
- return self.image_processor.calc_num_image_tokens(images)
127
-
128
- def calc_num_image_tokens_from_image_size(self, width, height):
129
- """ Calculate the number of image token for an image with given width and height.
130
- Args:
131
- width (`int`):
132
- Width of the image.
133
- height (`int`):
134
- Height of the image.
135
- """
136
- return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
137
-
138
-
139
- @property
140
- def special_image_token_id(self):
141
- return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
142
-
143
- def get_special_image_token_id(self):
144
- return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
145
-
146
- def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
147
-
148
- if not len(images):
149
- model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
150
- return BatchFeature(data={**model_inputs})
151
-
152
- pattern = r"<\|image_\d+\|>"
153
- prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
154
-
155
- if 'num_img_tokens' in images:
156
- num_img_tokens = images['num_img_tokens']
157
- else:
158
- assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
159
- num_crops = images['num_crops']
160
- num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
161
-
162
- images, image_sizes = images['pixel_values'], images['image_sizes']
163
-
164
- # image_tags needs to start from 1 to n
165
- image_tags = re.findall(pattern, texts)
166
- # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
167
- # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
168
- image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
169
- unique_image_ids = sorted(list(set(image_ids)))
170
- # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
171
- # check the condition
172
- assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
173
- # total images must be the same as the number of image tags
174
- assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
175
-
176
- image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
177
-
178
- def insert_separator(X, sep_list):
179
- if len(X) > len(sep_list):
180
- sep_list.append([])
181
- return [ele for sublist in zip(X, sep_list) for ele in sublist]
182
- input_ids = []
183
- offset = 0
184
- for x in insert_separator(prompt_chunks, image_ids_pad):
185
- input_ids.extend(x[offset:])
186
-
187
- input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
188
- attention_mask = (input_ids > -1000000).to(torch.long)
189
-
190
- return BatchFeature(data={"input_ids": input_ids,
191
- "attention_mask": attention_mask,
192
- "pixel_values": images,
193
- "image_sizes": image_sizes})
194
-
195
-
196
- # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
197
- def batch_decode(self, *args, **kwargs):
198
- """
199
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
200
- refer to the docstring of this method for more information.
201
- """
202
- return self.tokenizer.batch_decode(*args, **kwargs)
203
-
204
- # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
205
- def decode(self, *args, **kwargs):
206
- """
207
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
208
- the docstring of this method for more information.
209
- """
210
- return self.tokenizer.decode(*args, **kwargs)
211
-
212
- @property
213
- # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
214
- def model_input_names(self):
215
- tokenizer_input_names = self.tokenizer.model_input_names
216
- image_processor_input_names = self.image_processor.model_input_names
217
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))