Phi-3-mini-4k-instruct-8bit / sample_finetune.py
prince-canuma's picture
Upload folder using huggingface_hub
e1a7bb3 verified
raw
history blame
3.78 kB
import torch
from datasets import load_dataset
from trl import SFTTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
"""
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py
1. Install accelerate:
conda install -c conda-forge accelerate
2. Setup accelerate config:
accelerate config
to simply use all the GPUs available:
python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='bf16')"
check accelerate config:
accelerate env
3. Run the code:
accelerate launch sample_finetune.py
"""
###################
# Hyper-parameters
###################
args = {
"bf16": True,
"do_eval": False,
"eval_strategy": "no",
"learning_rate": 5.0e-06,
"log_level": "info",
"logging_steps": 20,
"logging_strategy": "steps",
"lr_scheduler_type": "cosine",
"num_train_epochs": 1,
"max_steps": -1,
"output_dir": "./checkpoint_dir",
"overwrite_output_dir": True,
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 8,
"remove_unused_columns": True,
"save_steps": 100,
"save_total_limit": 1,
"seed": 0,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs":{"use_reentrant": False},
"gradient_accumulation_steps": 1,
"warmup_ratio": 0.2,
}
training_args = TrainingArguments(**args)
################
# Modle Loading
################
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
# checkpoint_path = "microsoft/Phi-3-mini-128k-instruct"
model_kwargs = dict(
use_cache=False,
trust_remote_code=True,
attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
torch_dtype=torch.bfloat16,
device_map="cuda",
)
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = 'right'
##################
# Data Processing
##################
def apply_chat_template(
example,
tokenizer,
):
messages = example["messages"]
# Add an empty system message if there is none
if messages[0]["role"] != "system":
messages.insert(0, {"role": "system", "content": ""})
example["text"] = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False)
return example
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
column_names = list(raw_dataset["train_sft"].features)
processed_dataset = raw_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=12,
remove_columns=column_names,
desc="Applying chat template",
)
train_dataset = processed_dataset["train_sft"]
eval_dataset = processed_dataset["test_sft"]
###########
# Training
###########
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
max_seq_length=2048,
dataset_text_field="text",
tokenizer=tokenizer,
packing=True
)
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
#############
# Evaluation
#############
tokenizer.padding_side = 'left'
metrics = trainer.evaluate()
metrics["eval_samples"] = len(eval_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
############
# Save model
############
trainer.save_model(training_args.output_dir)