VincentGOURBIN commited on
Commit
c59fcfd
1 Parent(s): 35e6482

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -5
README.md CHANGED
@@ -10,6 +10,8 @@ tags:
10
  license: apache-2.0
11
  language:
12
  - en
 
 
13
  ---
14
 
15
  # mlx-community/Llama-3.2-3B-Fluxed
@@ -25,15 +27,40 @@ pip install mlx-lm
25
  ```python
26
  from mlx_lm import load, generate
27
 
28
- model, tokenizer = load("mlx-community/Llama-3.2-3B-Fluxed")
29
 
30
- prompt="hello"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
33
- messages = [{"role": "user", "content": prompt}]
 
34
  prompt = tokenizer.apply_chat_template(
35
  messages, tokenize=False, add_generation_prompt=True
36
  )
37
 
38
- response = generate(model, tokenizer, prompt=prompt, verbose=True)
39
- ```
 
10
  license: apache-2.0
11
  language:
12
  - en
13
+ datasets:
14
+ - VincentGOURBIN/FluxPrompting
15
  ---
16
 
17
  # mlx-community/Llama-3.2-3B-Fluxed
 
27
  ```python
28
  from mlx_lm import load, generate
29
 
 
30
 
31
+
32
+ model_id = "mlx-community/Llama-3.2-3B-Fluxed"
33
+
34
+ model, tokenizer = load(model_id)
35
+
36
+ user_need = "a toucan coding on a mac"
37
+
38
+ system_message = """
39
+ You are a prompt creation assistant for FLUX, an AI image generation model. Your mission is to help the user craft a detailed and optimized prompt by following these steps:
40
+
41
+ 1. **Understanding the User's Needs**:
42
+ - The user provides a basic idea, concept, or description.
43
+ - Analyze their input to determine essential details and nuances.
44
+
45
+ 2. **Enhancing Details**:
46
+ - Enrich the basic idea with vivid, specific, and descriptive elements.
47
+ - Include factors such as lighting, mood, style, perspective, and specific objects or elements the user wants in the scene.
48
+
49
+ 3. **Formatting the Prompt**:
50
+ - Structure the enriched description into a clear, precise, and effective prompt.
51
+ - Ensure the prompt is tailored for high-quality output from the FLUX model, considering its strengths (e.g., photorealistic details, fine anatomy, or artistic styles).
52
+
53
+ Use this process to compose a detailed and coherent prompt. Ensure the final prompt is clear and complete, and write your response in English.
54
+
55
+ Ensure that the final part is a synthesized version of the prompt.
56
+ """
57
 
58
  if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
59
+ messages = [{"role": "system", "content": system_message},
60
+ {"role": "user", "content": user_need}]
61
  prompt = tokenizer.apply_chat_template(
62
  messages, tokenize=False, add_generation_prompt=True
63
  )
64
 
65
+ response = generate(model, tokenizer, prompt=prompt, verbose=True,max_tokens=1000)
66
+ ```