mljn's picture
Update README.md
cd0dcc1 verified
|
raw
history blame
2.46 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: unga-climate-classifier
    results: []

ECCA climate classifier

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0936
  • Accuracy: 0.9798
  • F1 Macro: 0.9765
  • Accuracy Balanced: 0.9751
  • F1 Micro: 0.9798
  • Precision Macro: 0.9780
  • Recall Macro: 0.9751
  • Precision Micro: 0.9798
  • Recall Micro: 0.9798

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 80
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Accuracy Balanced F1 Micro Precision Macro Recall Macro Precision Micro Recall Micro
No log 1.0 123 0.1778 0.9609 0.9543 0.9510 0.9609 0.9577 0.9510 0.9609 0.9609
No log 2.0 246 0.1614 0.9680 0.9626 0.9593 0.9680 0.9661 0.9593 0.9680 0.9680
No log 3.0 369 0.1598 0.9680 0.9626 0.9593 0.9680 0.9661 0.9593 0.9680 0.9680
No log 4.0 492 0.1191 0.9703 0.9653 0.9610 0.9703 0.9699 0.9610 0.9703 0.9703
0.1357 5.0 615 0.1400 0.9727 0.9681 0.9638 0.9727 0.9727 0.9638 0.9727 0.9727

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.6.0
  • Tokenizers 0.15.1