sedrickkeh commited on
Commit
65378fe
1 Parent(s): 5fc83ff

Training in progress, epoch 2

Browse files
model-00001-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:002c5a8c23f54d89938860ff0ac1e305a35b8bbd69b70dc9e78a1b89604100af
3
  size 4943162336
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70e484fcf2f1e27fefae0c4e0249f754a46b134d348356d359047c6f9e902807
3
  size 4943162336
model-00002-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d65953e15b7fd56e6151e04476e1ae76156af2feb6e49bbcb3aa079025b11e1e
3
  size 4999819336
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1f56b69d3b6d8a72eafeec620884ccaf9b019a79f7dcac081cc4d9d6c74b03
3
  size 4999819336
model-00003-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8225678cac997609f04b6471fcc607949257ec9592f242eb16aa373d44ae3c7d
3
  size 4540516344
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deeb76ecfe034f673450ec219a0ce5123d5c771f47aa66ae96d13e120cdfa55b
3
  size 4540516344
trainer_log.jsonl CHANGED
@@ -209,3 +209,104 @@
209
  {"current_steps": 2071, "total_steps": 3105, "eval_loss": 0.4136686325073242, "epoch": 2.0, "percentage": 66.7, "elapsed_time": "4:51:39", "remaining_time": "2:25:36"}
210
  {"current_steps": 2080, "total_steps": 3105, "loss": 0.2226, "learning_rate": 5e-06, "epoch": 2.0086914534041527, "percentage": 66.99, "elapsed_time": "4:53:45", "remaining_time": "2:24:45"}
211
  {"current_steps": 2090, "total_steps": 3105, "loss": 0.2022, "learning_rate": 5e-06, "epoch": 2.018348623853211, "percentage": 67.31, "elapsed_time": "4:55:07", "remaining_time": "2:23:19"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
  {"current_steps": 2071, "total_steps": 3105, "eval_loss": 0.4136686325073242, "epoch": 2.0, "percentage": 66.7, "elapsed_time": "4:51:39", "remaining_time": "2:25:36"}
210
  {"current_steps": 2080, "total_steps": 3105, "loss": 0.2226, "learning_rate": 5e-06, "epoch": 2.0086914534041527, "percentage": 66.99, "elapsed_time": "4:53:45", "remaining_time": "2:24:45"}
211
  {"current_steps": 2090, "total_steps": 3105, "loss": 0.2022, "learning_rate": 5e-06, "epoch": 2.018348623853211, "percentage": 67.31, "elapsed_time": "4:55:07", "remaining_time": "2:23:19"}
212
+ {"current_steps": 2100, "total_steps": 3105, "loss": 0.2034, "learning_rate": 5e-06, "epoch": 2.0280057943022696, "percentage": 67.63, "elapsed_time": "4:56:28", "remaining_time": "2:21:53"}
213
+ {"current_steps": 2110, "total_steps": 3105, "loss": 0.1987, "learning_rate": 5e-06, "epoch": 2.037662964751328, "percentage": 67.95, "elapsed_time": "4:57:50", "remaining_time": "2:20:27"}
214
+ {"current_steps": 2120, "total_steps": 3105, "loss": 0.1998, "learning_rate": 5e-06, "epoch": 2.0473201352003865, "percentage": 68.28, "elapsed_time": "4:59:12", "remaining_time": "2:19:01"}
215
+ {"current_steps": 2130, "total_steps": 3105, "loss": 0.1977, "learning_rate": 5e-06, "epoch": 2.0569773056494447, "percentage": 68.6, "elapsed_time": "5:00:34", "remaining_time": "2:17:35"}
216
+ {"current_steps": 2140, "total_steps": 3105, "loss": 0.1997, "learning_rate": 5e-06, "epoch": 2.066634476098503, "percentage": 68.92, "elapsed_time": "5:01:56", "remaining_time": "2:16:09"}
217
+ {"current_steps": 2150, "total_steps": 3105, "loss": 0.2002, "learning_rate": 5e-06, "epoch": 2.0762916465475616, "percentage": 69.24, "elapsed_time": "5:03:18", "remaining_time": "2:14:43"}
218
+ {"current_steps": 2160, "total_steps": 3105, "loss": 0.2025, "learning_rate": 5e-06, "epoch": 2.08594881699662, "percentage": 69.57, "elapsed_time": "5:04:41", "remaining_time": "2:13:17"}
219
+ {"current_steps": 2170, "total_steps": 3105, "loss": 0.2005, "learning_rate": 5e-06, "epoch": 2.0956059874456785, "percentage": 69.89, "elapsed_time": "5:06:03", "remaining_time": "2:11:52"}
220
+ {"current_steps": 2180, "total_steps": 3105, "loss": 0.2076, "learning_rate": 5e-06, "epoch": 2.1052631578947367, "percentage": 70.21, "elapsed_time": "5:07:25", "remaining_time": "2:10:26"}
221
+ {"current_steps": 2190, "total_steps": 3105, "loss": 0.2031, "learning_rate": 5e-06, "epoch": 2.1149203283437954, "percentage": 70.53, "elapsed_time": "5:08:48", "remaining_time": "2:09:01"}
222
+ {"current_steps": 2200, "total_steps": 3105, "loss": 0.2042, "learning_rate": 5e-06, "epoch": 2.1245774987928536, "percentage": 70.85, "elapsed_time": "5:10:10", "remaining_time": "2:07:35"}
223
+ {"current_steps": 2210, "total_steps": 3105, "loss": 0.2016, "learning_rate": 5e-06, "epoch": 2.1342346692419123, "percentage": 71.18, "elapsed_time": "5:11:32", "remaining_time": "2:06:10"}
224
+ {"current_steps": 2220, "total_steps": 3105, "loss": 0.2017, "learning_rate": 5e-06, "epoch": 2.1438918396909705, "percentage": 71.5, "elapsed_time": "5:12:55", "remaining_time": "2:04:44"}
225
+ {"current_steps": 2230, "total_steps": 3105, "loss": 0.2015, "learning_rate": 5e-06, "epoch": 2.153549010140029, "percentage": 71.82, "elapsed_time": "5:14:17", "remaining_time": "2:03:19"}
226
+ {"current_steps": 2240, "total_steps": 3105, "loss": 0.2012, "learning_rate": 5e-06, "epoch": 2.1632061805890874, "percentage": 72.14, "elapsed_time": "5:15:39", "remaining_time": "2:01:53"}
227
+ {"current_steps": 2250, "total_steps": 3105, "loss": 0.2058, "learning_rate": 5e-06, "epoch": 2.1728633510381457, "percentage": 72.46, "elapsed_time": "5:17:01", "remaining_time": "2:00:28"}
228
+ {"current_steps": 2260, "total_steps": 3105, "loss": 0.2039, "learning_rate": 5e-06, "epoch": 2.1825205214872043, "percentage": 72.79, "elapsed_time": "5:18:24", "remaining_time": "1:59:02"}
229
+ {"current_steps": 2270, "total_steps": 3105, "loss": 0.206, "learning_rate": 5e-06, "epoch": 2.1921776919362626, "percentage": 73.11, "elapsed_time": "5:19:46", "remaining_time": "1:57:37"}
230
+ {"current_steps": 2280, "total_steps": 3105, "loss": 0.2073, "learning_rate": 5e-06, "epoch": 2.2018348623853212, "percentage": 73.43, "elapsed_time": "5:21:08", "remaining_time": "1:56:12"}
231
+ {"current_steps": 2290, "total_steps": 3105, "loss": 0.2082, "learning_rate": 5e-06, "epoch": 2.2114920328343795, "percentage": 73.75, "elapsed_time": "5:22:30", "remaining_time": "1:54:46"}
232
+ {"current_steps": 2300, "total_steps": 3105, "loss": 0.206, "learning_rate": 5e-06, "epoch": 2.221149203283438, "percentage": 74.07, "elapsed_time": "5:23:52", "remaining_time": "1:53:21"}
233
+ {"current_steps": 2310, "total_steps": 3105, "loss": 0.2022, "learning_rate": 5e-06, "epoch": 2.2308063737324964, "percentage": 74.4, "elapsed_time": "5:25:15", "remaining_time": "1:51:56"}
234
+ {"current_steps": 2320, "total_steps": 3105, "loss": 0.2092, "learning_rate": 5e-06, "epoch": 2.240463544181555, "percentage": 74.72, "elapsed_time": "5:26:36", "remaining_time": "1:50:30"}
235
+ {"current_steps": 2330, "total_steps": 3105, "loss": 0.2089, "learning_rate": 5e-06, "epoch": 2.2501207146306133, "percentage": 75.04, "elapsed_time": "5:27:58", "remaining_time": "1:49:05"}
236
+ {"current_steps": 2340, "total_steps": 3105, "loss": 0.2076, "learning_rate": 5e-06, "epoch": 2.2597778850796715, "percentage": 75.36, "elapsed_time": "5:29:20", "remaining_time": "1:47:40"}
237
+ {"current_steps": 2350, "total_steps": 3105, "loss": 0.2101, "learning_rate": 5e-06, "epoch": 2.26943505552873, "percentage": 75.68, "elapsed_time": "5:30:42", "remaining_time": "1:46:15"}
238
+ {"current_steps": 2360, "total_steps": 3105, "loss": 0.2092, "learning_rate": 5e-06, "epoch": 2.2790922259777884, "percentage": 76.01, "elapsed_time": "5:32:04", "remaining_time": "1:44:49"}
239
+ {"current_steps": 2370, "total_steps": 3105, "loss": 0.2092, "learning_rate": 5e-06, "epoch": 2.288749396426847, "percentage": 76.33, "elapsed_time": "5:33:26", "remaining_time": "1:43:24"}
240
+ {"current_steps": 2380, "total_steps": 3105, "loss": 0.21, "learning_rate": 5e-06, "epoch": 2.2984065668759053, "percentage": 76.65, "elapsed_time": "5:34:49", "remaining_time": "1:41:59"}
241
+ {"current_steps": 2390, "total_steps": 3105, "loss": 0.2121, "learning_rate": 5e-06, "epoch": 2.308063737324964, "percentage": 76.97, "elapsed_time": "5:36:11", "remaining_time": "1:40:34"}
242
+ {"current_steps": 2400, "total_steps": 3105, "loss": 0.2065, "learning_rate": 5e-06, "epoch": 2.317720907774022, "percentage": 77.29, "elapsed_time": "5:37:33", "remaining_time": "1:39:09"}
243
+ {"current_steps": 2410, "total_steps": 3105, "loss": 0.2079, "learning_rate": 5e-06, "epoch": 2.327378078223081, "percentage": 77.62, "elapsed_time": "5:38:55", "remaining_time": "1:37:44"}
244
+ {"current_steps": 2420, "total_steps": 3105, "loss": 0.2106, "learning_rate": 5e-06, "epoch": 2.337035248672139, "percentage": 77.94, "elapsed_time": "5:40:17", "remaining_time": "1:36:19"}
245
+ {"current_steps": 2430, "total_steps": 3105, "loss": 0.2134, "learning_rate": 5e-06, "epoch": 2.3466924191211973, "percentage": 78.26, "elapsed_time": "5:41:39", "remaining_time": "1:34:54"}
246
+ {"current_steps": 2440, "total_steps": 3105, "loss": 0.209, "learning_rate": 5e-06, "epoch": 2.356349589570256, "percentage": 78.58, "elapsed_time": "5:43:02", "remaining_time": "1:33:29"}
247
+ {"current_steps": 2450, "total_steps": 3105, "loss": 0.2086, "learning_rate": 5e-06, "epoch": 2.366006760019314, "percentage": 78.9, "elapsed_time": "5:44:25", "remaining_time": "1:32:04"}
248
+ {"current_steps": 2460, "total_steps": 3105, "loss": 0.214, "learning_rate": 5e-06, "epoch": 2.375663930468373, "percentage": 79.23, "elapsed_time": "5:45:48", "remaining_time": "1:30:40"}
249
+ {"current_steps": 2470, "total_steps": 3105, "loss": 0.2119, "learning_rate": 5e-06, "epoch": 2.385321100917431, "percentage": 79.55, "elapsed_time": "5:47:11", "remaining_time": "1:29:15"}
250
+ {"current_steps": 2480, "total_steps": 3105, "loss": 0.2143, "learning_rate": 5e-06, "epoch": 2.3949782713664898, "percentage": 79.87, "elapsed_time": "5:48:33", "remaining_time": "1:27:50"}
251
+ {"current_steps": 2490, "total_steps": 3105, "loss": 0.2138, "learning_rate": 5e-06, "epoch": 2.404635441815548, "percentage": 80.19, "elapsed_time": "5:49:56", "remaining_time": "1:26:25"}
252
+ {"current_steps": 2500, "total_steps": 3105, "loss": 0.213, "learning_rate": 5e-06, "epoch": 2.4142926122646067, "percentage": 80.52, "elapsed_time": "5:51:18", "remaining_time": "1:25:01"}
253
+ {"current_steps": 2510, "total_steps": 3105, "loss": 0.2101, "learning_rate": 5e-06, "epoch": 2.423949782713665, "percentage": 80.84, "elapsed_time": "5:52:41", "remaining_time": "1:23:36"}
254
+ {"current_steps": 2520, "total_steps": 3105, "loss": 0.2113, "learning_rate": 5e-06, "epoch": 2.433606953162723, "percentage": 81.16, "elapsed_time": "5:54:03", "remaining_time": "1:22:11"}
255
+ {"current_steps": 2530, "total_steps": 3105, "loss": 0.2121, "learning_rate": 5e-06, "epoch": 2.443264123611782, "percentage": 81.48, "elapsed_time": "5:55:26", "remaining_time": "1:20:46"}
256
+ {"current_steps": 2540, "total_steps": 3105, "loss": 0.213, "learning_rate": 5e-06, "epoch": 2.45292129406084, "percentage": 81.8, "elapsed_time": "5:56:48", "remaining_time": "1:19:22"}
257
+ {"current_steps": 2550, "total_steps": 3105, "loss": 0.2101, "learning_rate": 5e-06, "epoch": 2.4625784645098987, "percentage": 82.13, "elapsed_time": "5:58:10", "remaining_time": "1:17:57"}
258
+ {"current_steps": 2560, "total_steps": 3105, "loss": 0.2132, "learning_rate": 5e-06, "epoch": 2.472235634958957, "percentage": 82.45, "elapsed_time": "5:59:32", "remaining_time": "1:16:32"}
259
+ {"current_steps": 2570, "total_steps": 3105, "loss": 0.214, "learning_rate": 5e-06, "epoch": 2.4818928054080156, "percentage": 82.77, "elapsed_time": "6:00:55", "remaining_time": "1:15:07"}
260
+ {"current_steps": 2580, "total_steps": 3105, "loss": 0.2121, "learning_rate": 5e-06, "epoch": 2.491549975857074, "percentage": 83.09, "elapsed_time": "6:02:17", "remaining_time": "1:13:43"}
261
+ {"current_steps": 2590, "total_steps": 3105, "loss": 0.2146, "learning_rate": 5e-06, "epoch": 2.5012071463061325, "percentage": 83.41, "elapsed_time": "6:03:39", "remaining_time": "1:12:18"}
262
+ {"current_steps": 2600, "total_steps": 3105, "loss": 0.2131, "learning_rate": 5e-06, "epoch": 2.5108643167551907, "percentage": 83.74, "elapsed_time": "6:05:02", "remaining_time": "1:10:54"}
263
+ {"current_steps": 2610, "total_steps": 3105, "loss": 0.2135, "learning_rate": 5e-06, "epoch": 2.520521487204249, "percentage": 84.06, "elapsed_time": "6:06:24", "remaining_time": "1:09:29"}
264
+ {"current_steps": 2620, "total_steps": 3105, "loss": 0.2139, "learning_rate": 5e-06, "epoch": 2.5301786576533076, "percentage": 84.38, "elapsed_time": "6:07:46", "remaining_time": "1:08:04"}
265
+ {"current_steps": 2630, "total_steps": 3105, "loss": 0.216, "learning_rate": 5e-06, "epoch": 2.539835828102366, "percentage": 84.7, "elapsed_time": "6:09:09", "remaining_time": "1:06:40"}
266
+ {"current_steps": 2640, "total_steps": 3105, "loss": 0.2136, "learning_rate": 5e-06, "epoch": 2.5494929985514245, "percentage": 85.02, "elapsed_time": "6:10:32", "remaining_time": "1:05:15"}
267
+ {"current_steps": 2650, "total_steps": 3105, "loss": 0.2135, "learning_rate": 5e-06, "epoch": 2.5591501690004828, "percentage": 85.35, "elapsed_time": "6:11:56", "remaining_time": "1:03:51"}
268
+ {"current_steps": 2660, "total_steps": 3105, "loss": 0.2154, "learning_rate": 5e-06, "epoch": 2.5688073394495414, "percentage": 85.67, "elapsed_time": "6:13:19", "remaining_time": "1:02:27"}
269
+ {"current_steps": 2670, "total_steps": 3105, "loss": 0.2194, "learning_rate": 5e-06, "epoch": 2.5784645098985997, "percentage": 85.99, "elapsed_time": "6:14:41", "remaining_time": "1:01:02"}
270
+ {"current_steps": 2680, "total_steps": 3105, "loss": 0.2148, "learning_rate": 5e-06, "epoch": 2.5881216803476583, "percentage": 86.31, "elapsed_time": "6:16:04", "remaining_time": "0:59:38"}
271
+ {"current_steps": 2690, "total_steps": 3105, "loss": 0.2177, "learning_rate": 5e-06, "epoch": 2.5977788507967166, "percentage": 86.63, "elapsed_time": "6:17:26", "remaining_time": "0:58:13"}
272
+ {"current_steps": 2700, "total_steps": 3105, "loss": 0.217, "learning_rate": 5e-06, "epoch": 2.607436021245775, "percentage": 86.96, "elapsed_time": "6:18:48", "remaining_time": "0:56:49"}
273
+ {"current_steps": 2710, "total_steps": 3105, "loss": 0.2161, "learning_rate": 5e-06, "epoch": 2.6170931916948335, "percentage": 87.28, "elapsed_time": "6:20:11", "remaining_time": "0:55:24"}
274
+ {"current_steps": 2720, "total_steps": 3105, "loss": 0.216, "learning_rate": 5e-06, "epoch": 2.6267503621438917, "percentage": 87.6, "elapsed_time": "6:21:34", "remaining_time": "0:54:00"}
275
+ {"current_steps": 2730, "total_steps": 3105, "loss": 0.2164, "learning_rate": 5e-06, "epoch": 2.6364075325929504, "percentage": 87.92, "elapsed_time": "6:22:57", "remaining_time": "0:52:36"}
276
+ {"current_steps": 2740, "total_steps": 3105, "loss": 0.2183, "learning_rate": 5e-06, "epoch": 2.6460647030420086, "percentage": 88.24, "elapsed_time": "6:24:19", "remaining_time": "0:51:11"}
277
+ {"current_steps": 2750, "total_steps": 3105, "loss": 0.2185, "learning_rate": 5e-06, "epoch": 2.6557218734910673, "percentage": 88.57, "elapsed_time": "6:25:41", "remaining_time": "0:49:47"}
278
+ {"current_steps": 2760, "total_steps": 3105, "loss": 0.2166, "learning_rate": 5e-06, "epoch": 2.6653790439401255, "percentage": 88.89, "elapsed_time": "6:27:03", "remaining_time": "0:48:22"}
279
+ {"current_steps": 2770, "total_steps": 3105, "loss": 0.2184, "learning_rate": 5e-06, "epoch": 2.675036214389184, "percentage": 89.21, "elapsed_time": "6:28:25", "remaining_time": "0:46:58"}
280
+ {"current_steps": 2780, "total_steps": 3105, "loss": 0.2207, "learning_rate": 5e-06, "epoch": 2.6846933848382424, "percentage": 89.53, "elapsed_time": "6:29:47", "remaining_time": "0:45:34"}
281
+ {"current_steps": 2790, "total_steps": 3105, "loss": 0.2154, "learning_rate": 5e-06, "epoch": 2.6943505552873006, "percentage": 89.86, "elapsed_time": "6:31:10", "remaining_time": "0:44:09"}
282
+ {"current_steps": 2800, "total_steps": 3105, "loss": 0.2194, "learning_rate": 5e-06, "epoch": 2.7040077257363593, "percentage": 90.18, "elapsed_time": "6:32:33", "remaining_time": "0:42:45"}
283
+ {"current_steps": 2810, "total_steps": 3105, "loss": 0.216, "learning_rate": 5e-06, "epoch": 2.7136648961854175, "percentage": 90.5, "elapsed_time": "6:33:56", "remaining_time": "0:41:21"}
284
+ {"current_steps": 2820, "total_steps": 3105, "loss": 0.2208, "learning_rate": 5e-06, "epoch": 2.723322066634476, "percentage": 90.82, "elapsed_time": "6:35:18", "remaining_time": "0:39:57"}
285
+ {"current_steps": 2830, "total_steps": 3105, "loss": 0.2188, "learning_rate": 5e-06, "epoch": 2.7329792370835344, "percentage": 91.14, "elapsed_time": "6:36:41", "remaining_time": "0:38:32"}
286
+ {"current_steps": 2840, "total_steps": 3105, "loss": 0.222, "learning_rate": 5e-06, "epoch": 2.742636407532593, "percentage": 91.47, "elapsed_time": "6:38:04", "remaining_time": "0:37:08"}
287
+ {"current_steps": 2850, "total_steps": 3105, "loss": 0.2174, "learning_rate": 5e-06, "epoch": 2.7522935779816513, "percentage": 91.79, "elapsed_time": "6:39:26", "remaining_time": "0:35:44"}
288
+ {"current_steps": 2860, "total_steps": 3105, "loss": 0.2177, "learning_rate": 5e-06, "epoch": 2.76195074843071, "percentage": 92.11, "elapsed_time": "6:40:49", "remaining_time": "0:34:20"}
289
+ {"current_steps": 2870, "total_steps": 3105, "loss": 0.2176, "learning_rate": 5e-06, "epoch": 2.771607918879768, "percentage": 92.43, "elapsed_time": "6:42:12", "remaining_time": "0:32:56"}
290
+ {"current_steps": 2880, "total_steps": 3105, "loss": 0.2177, "learning_rate": 5e-06, "epoch": 2.7812650893288264, "percentage": 92.75, "elapsed_time": "6:43:35", "remaining_time": "0:31:31"}
291
+ {"current_steps": 2890, "total_steps": 3105, "loss": 0.219, "learning_rate": 5e-06, "epoch": 2.790922259777885, "percentage": 93.08, "elapsed_time": "6:44:58", "remaining_time": "0:30:07"}
292
+ {"current_steps": 2900, "total_steps": 3105, "loss": 0.2176, "learning_rate": 5e-06, "epoch": 2.8005794302269438, "percentage": 93.4, "elapsed_time": "6:46:21", "remaining_time": "0:28:43"}
293
+ {"current_steps": 2910, "total_steps": 3105, "loss": 0.2196, "learning_rate": 5e-06, "epoch": 2.810236600676002, "percentage": 93.72, "elapsed_time": "6:47:44", "remaining_time": "0:27:19"}
294
+ {"current_steps": 2920, "total_steps": 3105, "loss": 0.2207, "learning_rate": 5e-06, "epoch": 2.8198937711250602, "percentage": 94.04, "elapsed_time": "6:49:06", "remaining_time": "0:25:55"}
295
+ {"current_steps": 2930, "total_steps": 3105, "loss": 0.2192, "learning_rate": 5e-06, "epoch": 2.829550941574119, "percentage": 94.36, "elapsed_time": "6:50:29", "remaining_time": "0:24:31"}
296
+ {"current_steps": 2940, "total_steps": 3105, "loss": 0.2198, "learning_rate": 5e-06, "epoch": 2.839208112023177, "percentage": 94.69, "elapsed_time": "6:51:51", "remaining_time": "0:23:06"}
297
+ {"current_steps": 2950, "total_steps": 3105, "loss": 0.2211, "learning_rate": 5e-06, "epoch": 2.848865282472236, "percentage": 95.01, "elapsed_time": "6:53:13", "remaining_time": "0:21:42"}
298
+ {"current_steps": 2960, "total_steps": 3105, "loss": 0.2242, "learning_rate": 5e-06, "epoch": 2.858522452921294, "percentage": 95.33, "elapsed_time": "6:54:35", "remaining_time": "0:20:18"}
299
+ {"current_steps": 2970, "total_steps": 3105, "loss": 0.221, "learning_rate": 5e-06, "epoch": 2.8681796233703523, "percentage": 95.65, "elapsed_time": "6:55:58", "remaining_time": "0:18:54"}
300
+ {"current_steps": 2980, "total_steps": 3105, "loss": 0.2205, "learning_rate": 5e-06, "epoch": 2.877836793819411, "percentage": 95.97, "elapsed_time": "6:57:20", "remaining_time": "0:17:30"}
301
+ {"current_steps": 2990, "total_steps": 3105, "loss": 0.2187, "learning_rate": 5e-06, "epoch": 2.8874939642684696, "percentage": 96.3, "elapsed_time": "6:58:42", "remaining_time": "0:16:06"}
302
+ {"current_steps": 3000, "total_steps": 3105, "loss": 0.2217, "learning_rate": 5e-06, "epoch": 2.897151134717528, "percentage": 96.62, "elapsed_time": "7:00:04", "remaining_time": "0:14:42"}
303
+ {"current_steps": 3010, "total_steps": 3105, "loss": 0.2183, "learning_rate": 5e-06, "epoch": 2.906808305166586, "percentage": 96.94, "elapsed_time": "7:01:26", "remaining_time": "0:13:18"}
304
+ {"current_steps": 3020, "total_steps": 3105, "loss": 0.224, "learning_rate": 5e-06, "epoch": 2.9164654756156447, "percentage": 97.26, "elapsed_time": "7:02:48", "remaining_time": "0:11:54"}
305
+ {"current_steps": 3030, "total_steps": 3105, "loss": 0.2209, "learning_rate": 5e-06, "epoch": 2.926122646064703, "percentage": 97.58, "elapsed_time": "7:04:11", "remaining_time": "0:10:29"}
306
+ {"current_steps": 3040, "total_steps": 3105, "loss": 0.2222, "learning_rate": 5e-06, "epoch": 2.9357798165137616, "percentage": 97.91, "elapsed_time": "7:05:33", "remaining_time": "0:09:05"}
307
+ {"current_steps": 3050, "total_steps": 3105, "loss": 0.2197, "learning_rate": 5e-06, "epoch": 2.94543698696282, "percentage": 98.23, "elapsed_time": "7:06:55", "remaining_time": "0:07:41"}
308
+ {"current_steps": 3060, "total_steps": 3105, "loss": 0.2219, "learning_rate": 5e-06, "epoch": 2.955094157411878, "percentage": 98.55, "elapsed_time": "7:08:19", "remaining_time": "0:06:17"}
309
+ {"current_steps": 3070, "total_steps": 3105, "loss": 0.2212, "learning_rate": 5e-06, "epoch": 2.9647513278609368, "percentage": 98.87, "elapsed_time": "7:09:42", "remaining_time": "0:04:53"}
310
+ {"current_steps": 3080, "total_steps": 3105, "loss": 0.2233, "learning_rate": 5e-06, "epoch": 2.9744084983099954, "percentage": 99.19, "elapsed_time": "7:11:05", "remaining_time": "0:03:29"}
311
+ {"current_steps": 3090, "total_steps": 3105, "loss": 0.2226, "learning_rate": 5e-06, "epoch": 2.9840656687590537, "percentage": 99.52, "elapsed_time": "7:12:28", "remaining_time": "0:02:05"}
312
+ {"current_steps": 3100, "total_steps": 3105, "loss": 0.2217, "learning_rate": 5e-06, "epoch": 2.993722839208112, "percentage": 99.84, "elapsed_time": "7:13:50", "remaining_time": "0:00:41"}