sedrickkeh commited on
Commit
8369e59
1 Parent(s): ef55756

Training in progress, epoch 2

Browse files
model-00001-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:325efa4f6d4195963b8bc5ad2bbe245dbfbdecfd6b9b4cc955c2a8a4dd404830
3
  size 4943162336
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:536967b673922767d27a3f09d9ef8eedc9e2ddf529f9b79506cc1e3cfe19b29a
3
  size 4943162336
model-00002-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:adc1fa8e43956d15ceaa97dd7ae90c94a83a6be3b9059ce2b3195b017646a45f
3
  size 4999819336
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf9a17fe845de3ded9f86dc96b5d46d436ccf973f8cec070aca614821fec7e4a
3
  size 4999819336
model-00003-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:74ccc770dc84101b37751baf4000db43d5ddb9ac81ed4de475dcd7642231321e
3
  size 4540516344
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc70a121ee30c82ba4ce4a607d322efbd2812d8b4f02c6432e8aa227a1b28a19
3
  size 4540516344
trainer_log.jsonl CHANGED
@@ -208,3 +208,105 @@
208
  {"current_steps": 2070, "total_steps": 3105, "loss": 0.326, "learning_rate": 5e-06, "epoch": 1.999034282955094, "percentage": 66.67, "elapsed_time": "4:48:17", "remaining_time": "2:24:08"}
209
  {"current_steps": 2071, "total_steps": 3105, "eval_loss": 0.41363242268562317, "epoch": 2.0, "percentage": 66.7, "elapsed_time": "4:51:29", "remaining_time": "2:25:31"}
210
  {"current_steps": 2080, "total_steps": 3105, "loss": 0.2222, "learning_rate": 5e-06, "epoch": 2.0086914534041527, "percentage": 66.99, "elapsed_time": "4:53:37", "remaining_time": "2:24:41"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  {"current_steps": 2070, "total_steps": 3105, "loss": 0.326, "learning_rate": 5e-06, "epoch": 1.999034282955094, "percentage": 66.67, "elapsed_time": "4:48:17", "remaining_time": "2:24:08"}
209
  {"current_steps": 2071, "total_steps": 3105, "eval_loss": 0.41363242268562317, "epoch": 2.0, "percentage": 66.7, "elapsed_time": "4:51:29", "remaining_time": "2:25:31"}
210
  {"current_steps": 2080, "total_steps": 3105, "loss": 0.2222, "learning_rate": 5e-06, "epoch": 2.0086914534041527, "percentage": 66.99, "elapsed_time": "4:53:37", "remaining_time": "2:24:41"}
211
+ {"current_steps": 2090, "total_steps": 3105, "loss": 0.2019, "learning_rate": 5e-06, "epoch": 2.018348623853211, "percentage": 67.31, "elapsed_time": "4:55:00", "remaining_time": "2:23:15"}
212
+ {"current_steps": 2100, "total_steps": 3105, "loss": 0.203, "learning_rate": 5e-06, "epoch": 2.0280057943022696, "percentage": 67.63, "elapsed_time": "4:56:23", "remaining_time": "2:21:50"}
213
+ {"current_steps": 2110, "total_steps": 3105, "loss": 0.1982, "learning_rate": 5e-06, "epoch": 2.037662964751328, "percentage": 67.95, "elapsed_time": "4:57:45", "remaining_time": "2:20:24"}
214
+ {"current_steps": 2120, "total_steps": 3105, "loss": 0.1992, "learning_rate": 5e-06, "epoch": 2.0473201352003865, "percentage": 68.28, "elapsed_time": "4:59:08", "remaining_time": "2:18:59"}
215
+ {"current_steps": 2130, "total_steps": 3105, "loss": 0.2049, "learning_rate": 5e-06, "epoch": 2.0569773056494447, "percentage": 68.6, "elapsed_time": "5:00:31", "remaining_time": "2:17:33"}
216
+ {"current_steps": 2140, "total_steps": 3105, "loss": 0.1993, "learning_rate": 5e-06, "epoch": 2.066634476098503, "percentage": 68.92, "elapsed_time": "5:01:54", "remaining_time": "2:16:08"}
217
+ {"current_steps": 2150, "total_steps": 3105, "loss": 0.1998, "learning_rate": 5e-06, "epoch": 2.0762916465475616, "percentage": 69.24, "elapsed_time": "5:03:17", "remaining_time": "2:14:43"}
218
+ {"current_steps": 2160, "total_steps": 3105, "loss": 0.202, "learning_rate": 5e-06, "epoch": 2.08594881699662, "percentage": 69.57, "elapsed_time": "5:04:40", "remaining_time": "2:13:17"}
219
+ {"current_steps": 2170, "total_steps": 3105, "loss": 0.2002, "learning_rate": 5e-06, "epoch": 2.0956059874456785, "percentage": 69.89, "elapsed_time": "5:06:02", "remaining_time": "2:11:52"}
220
+ {"current_steps": 2180, "total_steps": 3105, "loss": 0.2076, "learning_rate": 5e-06, "epoch": 2.1052631578947367, "percentage": 70.21, "elapsed_time": "5:07:24", "remaining_time": "2:10:26"}
221
+ {"current_steps": 2190, "total_steps": 3105, "loss": 0.2028, "learning_rate": 5e-06, "epoch": 2.1149203283437954, "percentage": 70.53, "elapsed_time": "5:08:46", "remaining_time": "2:09:00"}
222
+ {"current_steps": 2200, "total_steps": 3105, "loss": 0.2042, "learning_rate": 5e-06, "epoch": 2.1245774987928536, "percentage": 70.85, "elapsed_time": "5:10:08", "remaining_time": "2:07:34"}
223
+ {"current_steps": 2210, "total_steps": 3105, "loss": 0.2013, "learning_rate": 5e-06, "epoch": 2.1342346692419123, "percentage": 71.18, "elapsed_time": "5:11:30", "remaining_time": "2:06:09"}
224
+ {"current_steps": 2220, "total_steps": 3105, "loss": 0.2015, "learning_rate": 5e-06, "epoch": 2.1438918396909705, "percentage": 71.5, "elapsed_time": "5:12:53", "remaining_time": "2:04:43"}
225
+ {"current_steps": 2230, "total_steps": 3105, "loss": 0.2012, "learning_rate": 5e-06, "epoch": 2.153549010140029, "percentage": 71.82, "elapsed_time": "5:14:15", "remaining_time": "2:03:18"}
226
+ {"current_steps": 2240, "total_steps": 3105, "loss": 0.2008, "learning_rate": 5e-06, "epoch": 2.1632061805890874, "percentage": 72.14, "elapsed_time": "5:15:37", "remaining_time": "2:01:52"}
227
+ {"current_steps": 2250, "total_steps": 3105, "loss": 0.2054, "learning_rate": 5e-06, "epoch": 2.1728633510381457, "percentage": 72.46, "elapsed_time": "5:16:59", "remaining_time": "2:00:27"}
228
+ {"current_steps": 2260, "total_steps": 3105, "loss": 0.2034, "learning_rate": 5e-06, "epoch": 2.1825205214872043, "percentage": 72.79, "elapsed_time": "5:18:21", "remaining_time": "1:59:01"}
229
+ {"current_steps": 2270, "total_steps": 3105, "loss": 0.2057, "learning_rate": 5e-06, "epoch": 2.1921776919362626, "percentage": 73.11, "elapsed_time": "5:19:43", "remaining_time": "1:57:36"}
230
+ {"current_steps": 2280, "total_steps": 3105, "loss": 0.207, "learning_rate": 5e-06, "epoch": 2.2018348623853212, "percentage": 73.43, "elapsed_time": "5:21:05", "remaining_time": "1:56:11"}
231
+ {"current_steps": 2290, "total_steps": 3105, "loss": 0.2078, "learning_rate": 5e-06, "epoch": 2.2114920328343795, "percentage": 73.75, "elapsed_time": "5:22:27", "remaining_time": "1:54:45"}
232
+ {"current_steps": 2300, "total_steps": 3105, "loss": 0.2056, "learning_rate": 5e-06, "epoch": 2.221149203283438, "percentage": 74.07, "elapsed_time": "5:23:49", "remaining_time": "1:53:20"}
233
+ {"current_steps": 2310, "total_steps": 3105, "loss": 0.2018, "learning_rate": 5e-06, "epoch": 2.2308063737324964, "percentage": 74.4, "elapsed_time": "5:25:11", "remaining_time": "1:51:55"}
234
+ {"current_steps": 2320, "total_steps": 3105, "loss": 0.2085, "learning_rate": 5e-06, "epoch": 2.240463544181555, "percentage": 74.72, "elapsed_time": "5:26:33", "remaining_time": "1:50:29"}
235
+ {"current_steps": 2330, "total_steps": 3105, "loss": 0.2081, "learning_rate": 5e-06, "epoch": 2.2501207146306133, "percentage": 75.04, "elapsed_time": "5:27:55", "remaining_time": "1:49:04"}
236
+ {"current_steps": 2340, "total_steps": 3105, "loss": 0.2068, "learning_rate": 5e-06, "epoch": 2.2597778850796715, "percentage": 75.36, "elapsed_time": "5:29:17", "remaining_time": "1:47:39"}
237
+ {"current_steps": 2350, "total_steps": 3105, "loss": 0.2093, "learning_rate": 5e-06, "epoch": 2.26943505552873, "percentage": 75.68, "elapsed_time": "5:30:39", "remaining_time": "1:46:14"}
238
+ {"current_steps": 2360, "total_steps": 3105, "loss": 0.2086, "learning_rate": 5e-06, "epoch": 2.2790922259777884, "percentage": 76.01, "elapsed_time": "5:32:01", "remaining_time": "1:44:48"}
239
+ {"current_steps": 2370, "total_steps": 3105, "loss": 0.2082, "learning_rate": 5e-06, "epoch": 2.288749396426847, "percentage": 76.33, "elapsed_time": "5:33:24", "remaining_time": "1:43:23"}
240
+ {"current_steps": 2380, "total_steps": 3105, "loss": 0.2094, "learning_rate": 5e-06, "epoch": 2.2984065668759053, "percentage": 76.65, "elapsed_time": "5:34:45", "remaining_time": "1:41:58"}
241
+ {"current_steps": 2390, "total_steps": 3105, "loss": 0.2114, "learning_rate": 5e-06, "epoch": 2.308063737324964, "percentage": 76.97, "elapsed_time": "5:36:08", "remaining_time": "1:40:33"}
242
+ {"current_steps": 2400, "total_steps": 3105, "loss": 0.2059, "learning_rate": 5e-06, "epoch": 2.317720907774022, "percentage": 77.29, "elapsed_time": "5:37:30", "remaining_time": "1:39:08"}
243
+ {"current_steps": 2410, "total_steps": 3105, "loss": 0.2073, "learning_rate": 5e-06, "epoch": 2.327378078223081, "percentage": 77.62, "elapsed_time": "5:38:52", "remaining_time": "1:37:43"}
244
+ {"current_steps": 2420, "total_steps": 3105, "loss": 0.2097, "learning_rate": 5e-06, "epoch": 2.337035248672139, "percentage": 77.94, "elapsed_time": "5:40:14", "remaining_time": "1:36:18"}
245
+ {"current_steps": 2430, "total_steps": 3105, "loss": 0.2126, "learning_rate": 5e-06, "epoch": 2.3466924191211973, "percentage": 78.26, "elapsed_time": "5:41:36", "remaining_time": "1:34:53"}
246
+ {"current_steps": 2440, "total_steps": 3105, "loss": 0.2082, "learning_rate": 5e-06, "epoch": 2.356349589570256, "percentage": 78.58, "elapsed_time": "5:42:58", "remaining_time": "1:33:28"}
247
+ {"current_steps": 2450, "total_steps": 3105, "loss": 0.2079, "learning_rate": 5e-06, "epoch": 2.366006760019314, "percentage": 78.9, "elapsed_time": "5:44:21", "remaining_time": "1:32:03"}
248
+ {"current_steps": 2460, "total_steps": 3105, "loss": 0.213, "learning_rate": 5e-06, "epoch": 2.375663930468373, "percentage": 79.23, "elapsed_time": "5:45:43", "remaining_time": "1:30:38"}
249
+ {"current_steps": 2470, "total_steps": 3105, "loss": 0.2112, "learning_rate": 5e-06, "epoch": 2.385321100917431, "percentage": 79.55, "elapsed_time": "5:47:05", "remaining_time": "1:29:13"}
250
+ {"current_steps": 2480, "total_steps": 3105, "loss": 0.214, "learning_rate": 5e-06, "epoch": 2.3949782713664898, "percentage": 79.87, "elapsed_time": "5:48:27", "remaining_time": "1:27:48"}
251
+ {"current_steps": 2490, "total_steps": 3105, "loss": 0.2133, "learning_rate": 5e-06, "epoch": 2.404635441815548, "percentage": 80.19, "elapsed_time": "5:49:49", "remaining_time": "1:26:24"}
252
+ {"current_steps": 2500, "total_steps": 3105, "loss": 0.2118, "learning_rate": 5e-06, "epoch": 2.4142926122646067, "percentage": 80.52, "elapsed_time": "5:51:11", "remaining_time": "1:24:59"}
253
+ {"current_steps": 2510, "total_steps": 3105, "loss": 0.2091, "learning_rate": 5e-06, "epoch": 2.423949782713665, "percentage": 80.84, "elapsed_time": "5:52:34", "remaining_time": "1:23:34"}
254
+ {"current_steps": 2520, "total_steps": 3105, "loss": 0.2103, "learning_rate": 5e-06, "epoch": 2.433606953162723, "percentage": 81.16, "elapsed_time": "5:53:57", "remaining_time": "1:22:10"}
255
+ {"current_steps": 2530, "total_steps": 3105, "loss": 0.2111, "learning_rate": 5e-06, "epoch": 2.443264123611782, "percentage": 81.48, "elapsed_time": "5:55:20", "remaining_time": "1:20:45"}
256
+ {"current_steps": 2540, "total_steps": 3105, "loss": 0.2119, "learning_rate": 5e-06, "epoch": 2.45292129406084, "percentage": 81.8, "elapsed_time": "5:56:42", "remaining_time": "1:19:20"}
257
+ {"current_steps": 2550, "total_steps": 3105, "loss": 0.209, "learning_rate": 5e-06, "epoch": 2.4625784645098987, "percentage": 82.13, "elapsed_time": "5:58:05", "remaining_time": "1:17:56"}
258
+ {"current_steps": 2560, "total_steps": 3105, "loss": 0.2124, "learning_rate": 5e-06, "epoch": 2.472235634958957, "percentage": 82.45, "elapsed_time": "5:59:27", "remaining_time": "1:16:31"}
259
+ {"current_steps": 2570, "total_steps": 3105, "loss": 0.2134, "learning_rate": 5e-06, "epoch": 2.4818928054080156, "percentage": 82.77, "elapsed_time": "6:00:49", "remaining_time": "1:15:06"}
260
+ {"current_steps": 2580, "total_steps": 3105, "loss": 0.212, "learning_rate": 5e-06, "epoch": 2.491549975857074, "percentage": 83.09, "elapsed_time": "6:02:12", "remaining_time": "1:13:42"}
261
+ {"current_steps": 2590, "total_steps": 3105, "loss": 0.2141, "learning_rate": 5e-06, "epoch": 2.5012071463061325, "percentage": 83.41, "elapsed_time": "6:03:34", "remaining_time": "1:12:17"}
262
+ {"current_steps": 2600, "total_steps": 3105, "loss": 0.2124, "learning_rate": 5e-06, "epoch": 2.5108643167551907, "percentage": 83.74, "elapsed_time": "6:04:56", "remaining_time": "1:10:52"}
263
+ {"current_steps": 2610, "total_steps": 3105, "loss": 0.2127, "learning_rate": 5e-06, "epoch": 2.520521487204249, "percentage": 84.06, "elapsed_time": "6:06:18", "remaining_time": "1:09:28"}
264
+ {"current_steps": 2620, "total_steps": 3105, "loss": 0.2131, "learning_rate": 5e-06, "epoch": 2.5301786576533076, "percentage": 84.38, "elapsed_time": "6:07:40", "remaining_time": "1:08:03"}
265
+ {"current_steps": 2630, "total_steps": 3105, "loss": 0.2153, "learning_rate": 5e-06, "epoch": 2.539835828102366, "percentage": 84.7, "elapsed_time": "6:09:02", "remaining_time": "1:06:39"}
266
+ {"current_steps": 2640, "total_steps": 3105, "loss": 0.2131, "learning_rate": 5e-06, "epoch": 2.5494929985514245, "percentage": 85.02, "elapsed_time": "6:10:24", "remaining_time": "1:05:14"}
267
+ {"current_steps": 2650, "total_steps": 3105, "loss": 0.213, "learning_rate": 5e-06, "epoch": 2.5591501690004828, "percentage": 85.35, "elapsed_time": "6:11:46", "remaining_time": "1:03:50"}
268
+ {"current_steps": 2660, "total_steps": 3105, "loss": 0.2148, "learning_rate": 5e-06, "epoch": 2.5688073394495414, "percentage": 85.67, "elapsed_time": "6:13:08", "remaining_time": "1:02:25"}
269
+ {"current_steps": 2670, "total_steps": 3105, "loss": 0.219, "learning_rate": 5e-06, "epoch": 2.5784645098985997, "percentage": 85.99, "elapsed_time": "6:14:30", "remaining_time": "1:01:00"}
270
+ {"current_steps": 2680, "total_steps": 3105, "loss": 0.2145, "learning_rate": 5e-06, "epoch": 2.5881216803476583, "percentage": 86.31, "elapsed_time": "6:15:52", "remaining_time": "0:59:36"}
271
+ {"current_steps": 2690, "total_steps": 3105, "loss": 0.2173, "learning_rate": 5e-06, "epoch": 2.5977788507967166, "percentage": 86.63, "elapsed_time": "6:17:14", "remaining_time": "0:58:11"}
272
+ {"current_steps": 2700, "total_steps": 3105, "loss": 0.2166, "learning_rate": 5e-06, "epoch": 2.607436021245775, "percentage": 86.96, "elapsed_time": "6:18:36", "remaining_time": "0:56:47"}
273
+ {"current_steps": 2710, "total_steps": 3105, "loss": 0.2154, "learning_rate": 5e-06, "epoch": 2.6170931916948335, "percentage": 87.28, "elapsed_time": "6:19:58", "remaining_time": "0:55:23"}
274
+ {"current_steps": 2720, "total_steps": 3105, "loss": 0.2154, "learning_rate": 5e-06, "epoch": 2.6267503621438917, "percentage": 87.6, "elapsed_time": "6:21:20", "remaining_time": "0:53:58"}
275
+ {"current_steps": 2730, "total_steps": 3105, "loss": 0.2161, "learning_rate": 5e-06, "epoch": 2.6364075325929504, "percentage": 87.92, "elapsed_time": "6:22:42", "remaining_time": "0:52:34"}
276
+ {"current_steps": 2740, "total_steps": 3105, "loss": 0.2183, "learning_rate": 5e-06, "epoch": 2.6460647030420086, "percentage": 88.24, "elapsed_time": "6:24:04", "remaining_time": "0:51:09"}
277
+ {"current_steps": 2750, "total_steps": 3105, "loss": 0.2183, "learning_rate": 5e-06, "epoch": 2.6557218734910673, "percentage": 88.57, "elapsed_time": "6:25:26", "remaining_time": "0:49:45"}
278
+ {"current_steps": 2760, "total_steps": 3105, "loss": 0.2164, "learning_rate": 5e-06, "epoch": 2.6653790439401255, "percentage": 88.89, "elapsed_time": "6:26:48", "remaining_time": "0:48:21"}
279
+ {"current_steps": 2770, "total_steps": 3105, "loss": 0.2181, "learning_rate": 5e-06, "epoch": 2.675036214389184, "percentage": 89.21, "elapsed_time": "6:28:10", "remaining_time": "0:46:56"}
280
+ {"current_steps": 2780, "total_steps": 3105, "loss": 0.2205, "learning_rate": 5e-06, "epoch": 2.6846933848382424, "percentage": 89.53, "elapsed_time": "6:29:31", "remaining_time": "0:45:32"}
281
+ {"current_steps": 2790, "total_steps": 3105, "loss": 0.2153, "learning_rate": 5e-06, "epoch": 2.6943505552873006, "percentage": 89.86, "elapsed_time": "6:30:53", "remaining_time": "0:44:07"}
282
+ {"current_steps": 2800, "total_steps": 3105, "loss": 0.2194, "learning_rate": 5e-06, "epoch": 2.7040077257363593, "percentage": 90.18, "elapsed_time": "6:32:15", "remaining_time": "0:42:43"}
283
+ {"current_steps": 2810, "total_steps": 3105, "loss": 0.2155, "learning_rate": 5e-06, "epoch": 2.7136648961854175, "percentage": 90.5, "elapsed_time": "6:33:36", "remaining_time": "0:41:19"}
284
+ {"current_steps": 2820, "total_steps": 3105, "loss": 0.2204, "learning_rate": 5e-06, "epoch": 2.723322066634476, "percentage": 90.82, "elapsed_time": "6:34:58", "remaining_time": "0:39:55"}
285
+ {"current_steps": 2830, "total_steps": 3105, "loss": 0.2185, "learning_rate": 5e-06, "epoch": 2.7329792370835344, "percentage": 91.14, "elapsed_time": "6:36:19", "remaining_time": "0:38:30"}
286
+ {"current_steps": 2840, "total_steps": 3105, "loss": 0.2215, "learning_rate": 5e-06, "epoch": 2.742636407532593, "percentage": 91.47, "elapsed_time": "6:37:40", "remaining_time": "0:37:06"}
287
+ {"current_steps": 2850, "total_steps": 3105, "loss": 0.2168, "learning_rate": 5e-06, "epoch": 2.7522935779816513, "percentage": 91.79, "elapsed_time": "6:39:03", "remaining_time": "0:35:42"}
288
+ {"current_steps": 2860, "total_steps": 3105, "loss": 0.2171, "learning_rate": 5e-06, "epoch": 2.76195074843071, "percentage": 92.11, "elapsed_time": "6:40:25", "remaining_time": "0:34:18"}
289
+ {"current_steps": 2870, "total_steps": 3105, "loss": 0.2172, "learning_rate": 5e-06, "epoch": 2.771607918879768, "percentage": 92.43, "elapsed_time": "6:41:47", "remaining_time": "0:32:53"}
290
+ {"current_steps": 2880, "total_steps": 3105, "loss": 0.2169, "learning_rate": 5e-06, "epoch": 2.7812650893288264, "percentage": 92.75, "elapsed_time": "6:43:09", "remaining_time": "0:31:29"}
291
+ {"current_steps": 2890, "total_steps": 3105, "loss": 0.2184, "learning_rate": 5e-06, "epoch": 2.790922259777885, "percentage": 93.08, "elapsed_time": "6:44:31", "remaining_time": "0:30:05"}
292
+ {"current_steps": 2900, "total_steps": 3105, "loss": 0.2172, "learning_rate": 5e-06, "epoch": 2.8005794302269438, "percentage": 93.4, "elapsed_time": "6:45:53", "remaining_time": "0:28:41"}
293
+ {"current_steps": 2910, "total_steps": 3105, "loss": 0.2191, "learning_rate": 5e-06, "epoch": 2.810236600676002, "percentage": 93.72, "elapsed_time": "6:47:16", "remaining_time": "0:27:17"}
294
+ {"current_steps": 2920, "total_steps": 3105, "loss": 0.2203, "learning_rate": 5e-06, "epoch": 2.8198937711250602, "percentage": 94.04, "elapsed_time": "6:48:38", "remaining_time": "0:25:53"}
295
+ {"current_steps": 2930, "total_steps": 3105, "loss": 0.2192, "learning_rate": 5e-06, "epoch": 2.829550941574119, "percentage": 94.36, "elapsed_time": "6:50:01", "remaining_time": "0:24:29"}
296
+ {"current_steps": 2940, "total_steps": 3105, "loss": 0.2194, "learning_rate": 5e-06, "epoch": 2.839208112023177, "percentage": 94.69, "elapsed_time": "6:51:24", "remaining_time": "0:23:05"}
297
+ {"current_steps": 2950, "total_steps": 3105, "loss": 0.2207, "learning_rate": 5e-06, "epoch": 2.848865282472236, "percentage": 95.01, "elapsed_time": "6:52:47", "remaining_time": "0:21:41"}
298
+ {"current_steps": 2960, "total_steps": 3105, "loss": 0.2234, "learning_rate": 5e-06, "epoch": 2.858522452921294, "percentage": 95.33, "elapsed_time": "6:54:09", "remaining_time": "0:20:17"}
299
+ {"current_steps": 2970, "total_steps": 3105, "loss": 0.2206, "learning_rate": 5e-06, "epoch": 2.8681796233703523, "percentage": 95.65, "elapsed_time": "6:55:32", "remaining_time": "0:18:53"}
300
+ {"current_steps": 2980, "total_steps": 3105, "loss": 0.2199, "learning_rate": 5e-06, "epoch": 2.877836793819411, "percentage": 95.97, "elapsed_time": "6:56:54", "remaining_time": "0:17:29"}
301
+ {"current_steps": 2990, "total_steps": 3105, "loss": 0.2181, "learning_rate": 5e-06, "epoch": 2.8874939642684696, "percentage": 96.3, "elapsed_time": "6:58:16", "remaining_time": "0:16:05"}
302
+ {"current_steps": 3000, "total_steps": 3105, "loss": 0.221, "learning_rate": 5e-06, "epoch": 2.897151134717528, "percentage": 96.62, "elapsed_time": "6:59:38", "remaining_time": "0:14:41"}
303
+ {"current_steps": 3010, "total_steps": 3105, "loss": 0.2176, "learning_rate": 5e-06, "epoch": 2.906808305166586, "percentage": 96.94, "elapsed_time": "7:01:00", "remaining_time": "0:13:17"}
304
+ {"current_steps": 3020, "total_steps": 3105, "loss": 0.2232, "learning_rate": 5e-06, "epoch": 2.9164654756156447, "percentage": 97.26, "elapsed_time": "7:02:21", "remaining_time": "0:11:53"}
305
+ {"current_steps": 3030, "total_steps": 3105, "loss": 0.2203, "learning_rate": 5e-06, "epoch": 2.926122646064703, "percentage": 97.58, "elapsed_time": "7:03:44", "remaining_time": "0:10:29"}
306
+ {"current_steps": 3040, "total_steps": 3105, "loss": 0.2215, "learning_rate": 5e-06, "epoch": 2.9357798165137616, "percentage": 97.91, "elapsed_time": "7:05:07", "remaining_time": "0:09:05"}
307
+ {"current_steps": 3050, "total_steps": 3105, "loss": 0.2193, "learning_rate": 5e-06, "epoch": 2.94543698696282, "percentage": 98.23, "elapsed_time": "7:06:30", "remaining_time": "0:07:41"}
308
+ {"current_steps": 3060, "total_steps": 3105, "loss": 0.2215, "learning_rate": 5e-06, "epoch": 2.955094157411878, "percentage": 98.55, "elapsed_time": "7:07:54", "remaining_time": "0:06:17"}
309
+ {"current_steps": 3070, "total_steps": 3105, "loss": 0.2208, "learning_rate": 5e-06, "epoch": 2.9647513278609368, "percentage": 98.87, "elapsed_time": "7:09:16", "remaining_time": "0:04:53"}
310
+ {"current_steps": 3080, "total_steps": 3105, "loss": 0.2229, "learning_rate": 5e-06, "epoch": 2.9744084983099954, "percentage": 99.19, "elapsed_time": "7:10:39", "remaining_time": "0:03:29"}
311
+ {"current_steps": 3090, "total_steps": 3105, "loss": 0.2221, "learning_rate": 5e-06, "epoch": 2.9840656687590537, "percentage": 99.52, "elapsed_time": "7:12:02", "remaining_time": "0:02:05"}
312
+ {"current_steps": 3100, "total_steps": 3105, "loss": 0.2213, "learning_rate": 5e-06, "epoch": 2.993722839208112, "percentage": 99.84, "elapsed_time": "7:13:25", "remaining_time": "0:00:41"}