metadata
base_model: unsloth/Meta-Llama-3.1-8B
library_name: peft
UltraLlama-3.1-8B
Llama 3.1 8B model trained on a high-quality magpie dataset to measure its quality:
Model | MMLU | Hellaswag | ARC-C | GSM8K | TruthfulQA | Winogrande | IFEval | MMLU-Pro | MATH Lvl 5 | GPQA | MuSR | BBH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Meta-Llama-3.1-8B | 65.28 | 82.09 | 59.22 | 51.02 | 45.15 | 77.58 | 11.45 | 32.74 | 4.38 | 30.93 | 7.98 | 46.77 |
Meta-Llama-3-8B-Instruct | 65.60 | 78.79 | 61.95 | 75.28 | 51.66 | 75.77 | 47.43 | 5.87 | 7.95 | 30.11 | 37.92 | 49.04 |
FineLlama-3.1-8B | 62.22 | 80.30 | 55.55 | 51.02 | 49.51 | 75.30 | 1.68 | 30.90 | 4.12 | 27.45 | 35.77 | 44.22 |
UltraLlama-3.1-8B | 54.36 | 74.98 | 55.46 | 51.10 | 49.93 | 72.05 | 10.19 | 26.63 | 3.08 | 25.47 | 40.93 | 42.44 |
Magpie underperforms FineTome-100k. The quality looks okay, but not as good as high-quality open-source datasets.