mlabonne commited on
Commit
f78ddab
β€’
1 Parent(s): 2e67100

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -5
README.md CHANGED
@@ -3,6 +3,8 @@ license: cc-by-nc-4.0
3
  tags:
4
  - merge
5
  - lazymergekit
 
 
6
  dataset:
7
  - mlabonne/truthy-dpo-v0.1
8
  - mlabonne/distilabel-intel-orca-dpo-pairs
@@ -16,8 +18,6 @@ language:
16
 
17
  # πŸ‘‘ NeuralMonarch-7B
18
 
19
- **Update 14/02/24: NeuralMonarch-7B is the new best-performing 7B model on Nous' benchmark suite! πŸŽ‰**
20
-
21
  NeuralMonarch-7B is a DPO fine-tuned of [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B/) using the [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) and [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference datasets.
22
 
23
  It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
@@ -27,11 +27,13 @@ It is based on a merge of the following models using [LazyMergekit](https://cola
27
 
28
  Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets.
29
 
 
 
30
  ## πŸ” Applications
31
 
32
- This model uses a context window of 8k. It is compatible with the following chat templates (tested with LM Studio): Alpaca, ChatML, and Mistral Instruct.
33
 
34
- Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.
35
 
36
  ## ⚑ Quantized models
37
 
@@ -39,18 +41,70 @@ Compared to other 7B models, it displays good performance in instruction followi
39
 
40
  ## πŸ† Evaluation
41
 
42
- The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
 
 
43
 
44
  | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
45
  |---|---:|---:|---:|---:|---:|
46
  | [**NeuralMonarch-7B**](https://huggingface.co/mlabonne/NeuralMonarch-7B) [πŸ“„](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | **62.73** | **45.31** | **76.99** | **78.35** | **50.28** |
 
47
  | [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [πŸ“„](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
48
  | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
49
  | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
50
  | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
 
51
  | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [πŸ“„](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
52
  | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [πŸ“„](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  ## πŸ’» Usage
55
 
56
  ```python
 
3
  tags:
4
  - merge
5
  - lazymergekit
6
+ - dpo
7
+ - rlhf
8
  dataset:
9
  - mlabonne/truthy-dpo-v0.1
10
  - mlabonne/distilabel-intel-orca-dpo-pairs
 
18
 
19
  # πŸ‘‘ NeuralMonarch-7B
20
 
 
 
21
  NeuralMonarch-7B is a DPO fine-tuned of [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B/) using the [jondurbin/truthy-dpo-v0.1](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) and [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference datasets.
22
 
23
  It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
 
27
 
28
  Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets.
29
 
30
+ **Try the demo**: https://huggingface.co/spaces/mlabonne/NeuralMonarch-7B-GGUF-Chat
31
+
32
  ## πŸ” Applications
33
 
34
+ This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).
35
 
36
+ Compared to other 7B models, it performs well in instruction following and reasoning tasks. For a chat/RP model with strong reasoning abilities, check out [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B).
37
 
38
  ## ⚑ Quantized models
39
 
 
41
 
42
  ## πŸ† Evaluation
43
 
44
+ ### Nous
45
+
46
+ NeuralMonarch-7B is one of the best-performing 7B models on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
47
 
48
  | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
49
  |---|---:|---:|---:|---:|---:|
50
  | [**NeuralMonarch-7B**](https://huggingface.co/mlabonne/NeuralMonarch-7B) [πŸ“„](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | **62.73** | **45.31** | **76.99** | **78.35** | **50.28** |
51
+ | [AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [πŸ“„](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 |
52
  | [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [πŸ“„](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
53
  | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
54
  | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
55
  | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
56
+ | [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [πŸ“„](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 |
57
  | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [πŸ“„](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
58
  | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [πŸ“„](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
59
 
60
+ ### EQ-bench
61
+
62
+ NeuralMonarch-7B is also outperforming 70B and 120B parameter models on [EQ-bench](https://eqbench.com/) by [Samuel J. Paech](https://twitter.com/sam_paech), who kindly ran the evaluations.
63
+
64
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/dnCFxieqLiAC3Ll6CfdZW.png)
65
+
66
+ ### Open LLM Leaderboard
67
+
68
+ NeuralMonarch-7B is one of the best-performing 7B models on the Open LLM Leaderboard.
69
+
70
+ ### MT-Bench
71
+
72
+ ```
73
+ ########## First turn ##########
74
+ score
75
+ model turn
76
+ gpt-4 1 8.95625
77
+ OmniBeagle-7B 1 8.31250
78
+ AlphaMonarch-7B 1 8.23750
79
+ claude-v1 1 8.15000
80
+ NeuralMonarch-7B 1 8.09375
81
+ gpt-3.5-turbo 1 8.07500
82
+ claude-instant-v1 1 7.80000
83
+
84
+ ########## Second turn ##########
85
+ score
86
+ model turn
87
+ gpt-4 2 9.025000
88
+ claude-instant-v1 2 8.012658
89
+ OmniBeagle-7B 2 7.837500
90
+ gpt-3.5-turbo 2 7.812500
91
+ claude-v1 2 7.650000
92
+ AlphaMonarch-7B 2 7.618750
93
+ NeuralMonarch-7B 2 7.375000
94
+
95
+ ########## Average ##########
96
+ score
97
+ model
98
+ gpt-4 8.990625
99
+ OmniBeagle-7B 8.075000
100
+ gpt-3.5-turbo 7.943750
101
+ AlphaMonarch-7B 7.928125
102
+ claude-instant-v1 7.905660
103
+ claude-v1 7.900000
104
+ NeuralMonarch-7B 7.734375
105
+ NeuralBeagle14-7B 7.628125
106
+ ```
107
+
108
  ## πŸ’» Usage
109
 
110
  ```python