mlabonne commited on
Commit
3c5baf8
Β·
verified Β·
1 Parent(s): a292f4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -7
README.md CHANGED
@@ -3,6 +3,8 @@ license: cc-by-nc-4.0
3
  tags:
4
  - merge
5
  - lazymergekit
 
 
6
  dataset:
7
  - mlabonne/truthy-dpo-v0.1
8
  - mlabonne/distilabel-intel-orca-dpo-pairs
@@ -17,7 +19,7 @@ language:
17
 
18
  # πŸ‘‘ AlphaMonarch-7B
19
 
20
- **Update 14/02/24: AlphaMonarch-7B is the new best-performing 7B model on Nous' benchmark suite! πŸŽ‰**
21
 
22
  AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
23
 
@@ -30,9 +32,9 @@ Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https:
30
 
31
  ## πŸ” Applications
32
 
33
- This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template.
34
 
35
- Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.
36
 
37
  ## ⚑ Quantized models
38
 
@@ -52,14 +54,15 @@ The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/ll
52
  | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
53
  | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
54
  | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
 
55
  | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [πŸ“„](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
56
  | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [πŸ“„](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
57
 
58
- ### Open LLM Leaderboard
 
 
59
 
60
- AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
61
 
62
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
63
 
64
  ### MT-Bench
65
 
@@ -68,11 +71,13 @@ AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LL
68
  score
69
  model turn
70
  gpt-4 1 8.95625
 
71
  AlphaMonarch-7B 1 8.23750
72
  claude-v1 1 8.15000
73
  gpt-3.5-turbo 1 8.07500
74
  claude-instant-v1 1 7.80000
75
 
 
76
  ########## Second turn ##########
77
  score
78
  model turn
@@ -81,17 +86,26 @@ claude-instant-v1 2 8.012658
81
  gpt-3.5-turbo 2 7.812500
82
  claude-v1 2 7.650000
83
  AlphaMonarch-7B 2 7.618750
 
84
 
85
  ########## Average ##########
86
  score
87
  model
88
  gpt-4 8.990625
 
89
  gpt-3.5-turbo 7.943750
90
  AlphaMonarch-7B 7.928125
91
  claude-instant-v1 7.905660
92
  claude-v1 7.900000
 
93
  ```
94
 
 
 
 
 
 
 
95
  ## πŸ’» Usage
96
 
97
  ```python
@@ -101,7 +115,7 @@ from transformers import AutoTokenizer
101
  import transformers
102
  import torch
103
 
104
- model = "mlabonne/MonarchMonarch-7B"
105
  messages = [{"role": "user", "content": "What is a large language model?"}]
106
 
107
  tokenizer = AutoTokenizer.from_pretrained(model)
 
3
  tags:
4
  - merge
5
  - lazymergekit
6
+ - dpo
7
+ - rlhf
8
  dataset:
9
  - mlabonne/truthy-dpo-v0.1
10
  - mlabonne/distilabel-intel-orca-dpo-pairs
 
19
 
20
  # πŸ‘‘ AlphaMonarch-7B
21
 
22
+ **tl;dr: AlphaMonarch-7B is a new DPO merge that retains all the reasoning abilities of the very best merges and significantly improves its conversational abilities. Kind of the best of both worlds in a 7B model. πŸŽ‰**
23
 
24
  AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
25
 
 
32
 
33
  ## πŸ” Applications
34
 
35
+ This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template (works perfectly with LM Studio).
36
 
37
+ It is one of the very best 7B models in terms of instructing following and reasoning abilities and can be used for conversations, RP, and storytelling. Note that it tends to have a quite formal and sophisticated style, but it can be changed by modifying the prompt.
38
 
39
  ## ⚑ Quantized models
40
 
 
54
  | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
55
  | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
56
  | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
57
+ | [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B) [πŸ“„](https://gist.github.com/mlabonne/0e49d591787185fa5ae92ca5d9d4a1fd) | 62.3 | 45.85 | 77.26 | 76.06 | 50.03 |
58
  | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [πŸ“„](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
59
  | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [πŸ“„](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
60
 
61
+ ### EQ-bench
62
+
63
+ AlphaMonarch-7B is the second best-performing 7B model on [EQ-bench](https://eqbench.com/) by Samuel J. Peach.
64
 
 
65
 
 
66
 
67
  ### MT-Bench
68
 
 
71
  score
72
  model turn
73
  gpt-4 1 8.95625
74
+ OmniBeagle-7B 1 8.32500
75
  AlphaMonarch-7B 1 8.23750
76
  claude-v1 1 8.15000
77
  gpt-3.5-turbo 1 8.07500
78
  claude-instant-v1 1 7.80000
79
 
80
+
81
  ########## Second turn ##########
82
  score
83
  model turn
 
86
  gpt-3.5-turbo 2 7.812500
87
  claude-v1 2 7.650000
88
  AlphaMonarch-7B 2 7.618750
89
+ OmniBeagle-7B 2 7.587500
90
 
91
  ########## Average ##########
92
  score
93
  model
94
  gpt-4 8.990625
95
+ OmniBeagle-7B 7.956250
96
  gpt-3.5-turbo 7.943750
97
  AlphaMonarch-7B 7.928125
98
  claude-instant-v1 7.905660
99
  claude-v1 7.900000
100
+ NeuralBeagle14-7B 7.628125
101
  ```
102
 
103
+ ### Open LLM Leaderboard
104
+
105
+ AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
106
+
107
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
108
+
109
  ## πŸ’» Usage
110
 
111
  ```python
 
115
  import transformers
116
  import torch
117
 
118
+ model = "mlabonne/AlphaMonarch-7B"
119
  messages = [{"role": "user", "content": "What is a large language model?"}]
120
 
121
  tokenizer = AutoTokenizer.from_pretrained(model)