pszemraj commited on
Commit
7ebddb4
1 Parent(s): 2756d70

update files

Browse files
Files changed (1) hide show
  1. README.md +58 -39
README.md CHANGED
@@ -1,24 +1,3 @@
1
- ---
2
- language:
3
- - en
4
- datasets:
5
- - pubmed
6
- metrics:
7
- - f1
8
- pipeline_tag: text-classification
9
- widget:
10
- - text: "many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions."
11
- example_title: "background example"
12
- - text: "a total of 192 mi patients and 140 control persons were included."
13
- example_title: "methods example"
14
- - text: "mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared to the healthy control group (p < 0. 001.)"
15
- example_title: "results example"
16
- - text: "the finding that a brief cb group intervention delivered by real-world providers significantly reduced mdd onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression."
17
- example_title: "conclusions example"
18
- - text: "in order to understand and update the prevalence of myopia in taiwan, a nationwide survey was performed in 1995."
19
- example_title: "objective example"
20
- ---
21
-
22
  # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pub_section
23
  - original model file name: textclassifer_BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pubmed_20k
24
  - This is a fine-tuned checkpoint of `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext` for document section text classification
@@ -29,40 +8,80 @@ widget:
29
 
30
  ### training_metrics
31
 
32
- - val_accuracy: 0.8724678754806519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- - val_matthewscorrcoef: 0.8290084004402161
35
 
36
- - val_f1score: 0.8707401752471924
37
 
38
- - val_cross_entropy: 0.3521413803100586
39
 
40
- - epoch: 4.0
41
 
42
- - train_accuracy_step: 0.6875
43
 
44
- - train_matthewscorrcoef_step: 0.5752688050270081
45
 
46
- - train_f1score_step: 0.6875
47
 
48
- - train_cross_entropy_step: 0.9718704223632812
49
 
50
- - train_accuracy_epoch: 0.8582640886306763
51
 
52
- - train_matthewscorrcoef_epoch: 0.8091862797737122
53
 
54
- - train_f1score_epoch: 0.8565496206283569
55
 
56
- - train_cross_entropy_epoch: 0.39623069763183594
57
 
58
- - test_accuracy: 0.863082766532898
59
 
60
- - test_matthewscorrcoef: 0.816676676273346
61
 
62
- - test_f1score: 0.8613550662994385
63
 
64
- - test_cross_entropy: 0.3769755959510803
65
 
66
- - date_run: Apr-21-2022_t-02
67
 
68
  - huggingface_tag: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pub_section
2
  - original model file name: textclassifer_BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext_pubmed_20k
3
  - This is a fine-tuned checkpoint of `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext` for document section text classification
 
8
 
9
  ### training_metrics
10
 
11
+ - val_accuracy: 0.8678670525550842
12
+
13
+ - val_matthewscorrcoef: 0.8222037553787231
14
+
15
+ - val_f1score: 0.866841197013855
16
+
17
+ - val_cross_entropy: 0.3674609065055847
18
+
19
+ - epoch: 8.0
20
+
21
+ - train_accuracy_step: 0.83984375
22
+
23
+ - train_matthewscorrcoef_step: 0.7790813446044922
24
+
25
+ - train_f1score_step: 0.837363600730896
26
+
27
+ - train_cross_entropy_step: 0.39843088388442993
28
+
29
+ - train_accuracy_epoch: 0.8538406491279602
30
+
31
+ - train_matthewscorrcoef_epoch: 0.8031334280967712
32
+
33
+ - train_f1score_epoch: 0.8521654605865479
34
+
35
+ - train_cross_entropy_epoch: 0.4116102457046509
36
+
37
+ - test_accuracy: 0.8578397035598755
38
+
39
+ - test_matthewscorrcoef: 0.8091378808021545
40
+
41
+ - test_f1score: 0.8566917181015015
42
+
43
+ - test_cross_entropy: 0.3963385224342346
44
+
45
+ - date_run: Apr-22-2022_t-19
46
+
47
+ - huggingface_tag: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
48
+
49
+ ### training_parameters
50
+
51
+ - val_accuracy: 0.8678670525550842
52
 
53
+ - val_matthewscorrcoef: 0.8222037553787231
54
 
55
+ - val_f1score: 0.866841197013855
56
 
57
+ - val_cross_entropy: 0.3674609065055847
58
 
59
+ - epoch: 8.0
60
 
61
+ - train_accuracy_step: 0.83984375
62
 
63
+ - train_matthewscorrcoef_step: 0.7790813446044922
64
 
65
+ - train_f1score_step: 0.837363600730896
66
 
67
+ - train_cross_entropy_step: 0.39843088388442993
68
 
69
+ - train_accuracy_epoch: 0.8538406491279602
70
 
71
+ - train_matthewscorrcoef_epoch: 0.8031334280967712
72
 
73
+ - train_f1score_epoch: 0.8521654605865479
74
 
75
+ - train_cross_entropy_epoch: 0.4116102457046509
76
 
77
+ - test_accuracy: 0.8578397035598755
78
 
79
+ - test_matthewscorrcoef: 0.8091378808021545
80
 
81
+ - test_f1score: 0.8566917181015015
82
 
83
+ - test_cross_entropy: 0.3963385224342346
84
 
85
+ - date_run: Apr-22-2022_t-19
86
 
87
  - huggingface_tag: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext