mjschock commited on
Commit
6bab3e6
1 Parent(s): 20c59e9

2nd commit w/ 2m timesteps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.35 +/- 1.26
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -3.43 +/- 0.46
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ce24d62906e69c476c696626f3b34676a211c5701333185da5dd611e5f88c487
3
- size 108023
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa34c1e41a7650cf15b2a21ac1a80aa9d63662399e3b1d70257bb2dde65ce0be
3
+ size 107769
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0555308af0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f055530a2d0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1676347191472670622,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANmXVP3cHuL5vsts/5nsHv4RzNj+ytV4/tY6lv8z0mL8cy4Y/25qWP1+aUD+2FY2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87TuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]]",
60
- "desired_goal": "[[ 1.6671512 -0.35943195 1.7163829 ]\n [-0.5292343 0.7127001 0.86995995]\n [-1.2934176 -1.1949706 1.0530734 ]\n [ 1.1766008 0.8148555 -1.1022251 ]]",
61
- "observation": "[[ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMjrqvQ/uDT4AIn09R32OPflnHr0hipA9fddJvXMc0LwvMr888mnMPa5I873OgAo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.11436881 0.13860343 0.0618 ]\n [ 0.06957489 -0.03867337 0.07057596]\n [-0.04927777 -0.02540419 0.02333936]\n [ 0.09981145 -0.11879097 0.13525698]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9h/nZsWAsCUhpRSlIwBbJRLMowBdJRHQKdtOT8HfMx1fZQoaAZoCWgPQwhMx5xn7IsJwJSGlFKUaBVLMmgWR0CnbPbzshPkdX2UKGgGaAloD0MIYvay7bR1FMCUhpRSlGgVSzJoFkdAp2y2vwEyL3V9lChoBmgJaA9DCKKakqzD8QDAlIaUUpRoFUsyaBZHQKdsdD4QBgh1fZQoaAZoCWgPQwheDybFx+cEwJSGlFKUaBVLMmgWR0CnbsYUnG83dX2UKGgGaAloD0MIayqLwi7K/7+UhpRSlGgVSzJoFkdAp26DzCk43nV9lChoBmgJaA9DCLqilBCsSgbAlIaUUpRoFUsyaBZHQKduQyfL9uR1fZQoaAZoCWgPQwjJc30fDpIJwJSGlFKUaBVLMmgWR0CnbgBgeA/cdX2UKGgGaAloD0MITU2CN6SRB8CUhpRSlGgVSzJoFkdAp2/qREF4cHV9lChoBmgJaA9DCJG6nX3lwf2/lIaUUpRoFUsyaBZHQKdvp6By0a91fZQoaAZoCWgPQwieRe9UwL36v5SGlFKUaBVLMmgWR0Cnb2ZMtbs4dX2UKGgGaAloD0MIchk3NdD897+UhpRSlGgVSzJoFkdAp28jOE/SpnV9lChoBmgJaA9DCPqa5bLR+QXAlIaUUpRoFUsyaBZHQKdw99GZuyh1fZQoaAZoCWgPQwiR7ucU5McKwJSGlFKUaBVLMmgWR0CncLUCaJAMdX2UKGgGaAloD0MIUkSGVbxBEMCUhpRSlGgVSzJoFkdAp3BzxiG34XV9lChoBmgJaA9DCInvxKwXYxDAlIaUUpRoFUsyaBZHQKdwMMMI/qx1fZQoaAZoCWgPQwhyhuKON/nyv5SGlFKUaBVLMmgWR0CncfbQswtbdX2UKGgGaAloD0MIAfp9/+YF+7+UhpRSlGgVSzJoFkdAp3G0FMZgonV9lChoBmgJaA9DCIOG/gkulgXAlIaUUpRoFUsyaBZHQKdxcstkFwF1fZQoaAZoCWgPQwhqM05DVAEEwJSGlFKUaBVLMmgWR0CncS+5nUUgdX2UKGgGaAloD0MIiq4LPzgfCcCUhpRSlGgVSzJoFkdAp3LwhQm/nHV9lChoBmgJaA9DCGN/2T15GP6/lIaUUpRoFUsyaBZHQKdyreQ+2Vp1fZQoaAZoCWgPQwhMxjGSPeIDwJSGlFKUaBVLMmgWR0Cncmyd4FA3dX2UKGgGaAloD0MIj8TL07mCBcCUhpRSlGgVSzJoFkdAp3IpavA443V9lChoBmgJaA9DCPiL2ZJVMQjAlIaUUpRoFUsyaBZHQKdz7SZSeiB1fZQoaAZoCWgPQwi1No3ttSADwJSGlFKUaBVLMmgWR0Cnc6o6S1VpdX2UKGgGaAloD0MIOpZ31QOmCMCUhpRSlGgVSzJoFkdAp3No3rD633V9lChoBmgJaA9DCADHnj2XKQ7AlIaUUpRoFUsyaBZHQKdzJcZ9/jN1fZQoaAZoCWgPQwgs1QW8zHD6v5SGlFKUaBVLMmgWR0CndPR3V09ydX2UKGgGaAloD0MIOQ1RhT8jB8CUhpRSlGgVSzJoFkdAp3SxjpcHGHV9lChoBmgJaA9DCIOnkCv1rPK/lIaUUpRoFUsyaBZHQKd0cGdI5HV1fZQoaAZoCWgPQwhLrfcb7Tjvv5SGlFKUaBVLMmgWR0CndC029+PSdX2UKGgGaAloD0MIFRxeEJFaCMCUhpRSlGgVSzJoFkdAp3XiYRdyDXV9lChoBmgJaA9DCAETuHU3T+y/lIaUUpRoFUsyaBZHQKd1n4Oc2BJ1fZQoaAZoCWgPQwheTZ6ymq74v5SGlFKUaBVLMmgWR0CndV5ElVtGdX2UKGgGaAloD0MIcxHfiVkv8r+UhpRSlGgVSzJoFkdAp3Ua+BYms3V9lChoBmgJaA9DCAdfmEwVDP6/lIaUUpRoFUsyaBZHQKd22TEit7t1fZQoaAZoCWgPQwj8OQX52agPwJSGlFKUaBVLMmgWR0CndpZP2wmmdX2UKGgGaAloD0MINIXOa+zS+7+UhpRSlGgVSzJoFkdAp3ZU/dIoVnV9lChoBmgJaA9DCDZbecn/ZALAlIaUUpRoFUsyaBZHQKd2EafjCHh1fZQoaAZoCWgPQwjU1R2LbbIKwJSGlFKUaBVLMmgWR0Cnd84sd1dPdX2UKGgGaAloD0MIvTlcqz2MCsCUhpRSlGgVSzJoFkdAp3eLiqABk3V9lChoBmgJaA9DCPhQoiWPJwfAlIaUUpRoFUsyaBZHQKd3Skl/pdN1fZQoaAZoCWgPQwiPOGQD6eL5v5SGlFKUaBVLMmgWR0CndwbdznzQdX2UKGgGaAloD0MIr2Ab8WQXA8CUhpRSlGgVSzJoFkdAp3jLCYTkAHV9lChoBmgJaA9DCDCCxkyiXv2/lIaUUpRoFUsyaBZHQKd4iAmzByl1fZQoaAZoCWgPQwgdy7vqATMNwJSGlFKUaBVLMmgWR0CneEbuMMqjdX2UKGgGaAloD0MID7dDw2I0CcCUhpRSlGgVSzJoFkdAp3gD06HTJHV9lChoBmgJaA9DCNNqSNxj6f2/lIaUUpRoFUsyaBZHQKd5vSGahHt1fZQoaAZoCWgPQwhCdt7GZkf8v5SGlFKUaBVLMmgWR0CneXpQDV6NdX2UKGgGaAloD0MI4Lw48dVO8b+UhpRSlGgVSzJoFkdAp3k5H7P6bnV9lChoBmgJaA9DCEXXhR+cTwPAlIaUUpRoFUsyaBZHQKd49hzeXRh1fZQoaAZoCWgPQwjBV3TrNb0AwJSGlFKUaBVLMmgWR0CnerHUc4o7dX2UKGgGaAloD0MIegCL/Poh7b+UhpRSlGgVSzJoFkdAp3pvB+F10XV9lChoBmgJaA9DCCy2SUVjbe6/lIaUUpRoFUsyaBZHQKd6Lc5bQkZ1fZQoaAZoCWgPQwhFSrN5HEb0v5SGlFKUaBVLMmgWR0CneeqGlANYdX2UKGgGaAloD0MI0/avrDSp9L+UhpRSlGgVSzJoFkdAp3uroIOYpnV9lChoBmgJaA9DCB0+6USC6fi/lIaUUpRoFUsyaBZHQKd7aOaOPvN1fZQoaAZoCWgPQwjy64fYYGEAwJSGlFKUaBVLMmgWR0CneyeQ2dd3dX2UKGgGaAloD0MIVoFaDB4GAcCUhpRSlGgVSzJoFkdAp3rkRvm5lXV9lChoBmgJaA9DCGjPZWoSvAbAlIaUUpRoFUsyaBZHQKd8ritJWeZ1fZQoaAZoCWgPQwiv0t11NqQHwJSGlFKUaBVLMmgWR0CnfGt5MURGdX2UKGgGaAloD0MIg8KgTKPpC8CUhpRSlGgVSzJoFkdAp3wqZQYUFnV9lChoBmgJaA9DCHwpPGh2HRDAlIaUUpRoFUsyaBZHQKd75yoXKr91fZQoaAZoCWgPQwjZ7bPKTCkAwJSGlFKUaBVLMmgWR0CnfbvJ7sv7dX2UKGgGaAloD0MI1IIXfQXpAcCUhpRSlGgVSzJoFkdAp315HLA573V9lChoBmgJaA9DCEBQbtv3CATAlIaUUpRoFUsyaBZHQKd9OCRwIdF1fZQoaAZoCWgPQwgqqKj6lc4EwJSGlFKUaBVLMmgWR0CnfPUfozN2dX2UKGgGaAloD0MI3j6rzJQW/b+UhpRSlGgVSzJoFkdAp36+dqcmSnV9lChoBmgJaA9DCNODglK0UgPAlIaUUpRoFUsyaBZHQKd+e4EwFkh1fZQoaAZoCWgPQwjIJ2TnbWwIwJSGlFKUaBVLMmgWR0CnfjqMm4RVdX2UKGgGaAloD0MICVOUS+MXBsCUhpRSlGgVSzJoFkdAp333Ot4iYHV9lChoBmgJaA9DCH4dOGdE6fG/lIaUUpRoFUsyaBZHQKd/s9+PRzB1fZQoaAZoCWgPQwg2PL1SlmHyv5SGlFKUaBVLMmgWR0Cnf3DneSB9dX2UKGgGaAloD0MIVrd6TnqfDMCUhpRSlGgVSzJoFkdAp38vvH93r3V9lChoBmgJaA9DCPqZet0i0AnAlIaUUpRoFUsyaBZHQKd+7H/cWTJ1fZQoaAZoCWgPQwjpfeNrz6wBwJSGlFKUaBVLMmgWR0CngKINEw36dX2UKGgGaAloD0MIdlH0wMfACMCUhpRSlGgVSzJoFkdAp4BfGOuJUHV9lChoBmgJaA9DCEC/79+8eATAlIaUUpRoFUsyaBZHQKeAHfl6qsF1fZQoaAZoCWgPQwjTEcDN4uUBwJSGlFKUaBVLMmgWR0Cnf9rFwT/RdX2UKGgGaAloD0MI547+l2uxB8CUhpRSlGgVSzJoFkdAp4GcRaouPHV9lChoBmgJaA9DCKCM8WH28va/lIaUUpRoFUsyaBZHQKeBWXrMTvl1fZQoaAZoCWgPQwgydsJLcKr/v5SGlFKUaBVLMmgWR0CngRhwdbPhdX2UKGgGaAloD0MIhxqFJLO6/7+UhpRSlGgVSzJoFkdAp4DVTP0I1XV9lChoBmgJaA9DCCU8odefZAXAlIaUUpRoFUsyaBZHQKeCldD6WPd1fZQoaAZoCWgPQwjle0YiNOIGwJSGlFKUaBVLMmgWR0CnglM0gr6MdX2UKGgGaAloD0MIkuwRaoZUAsCUhpRSlGgVSzJoFkdAp4IRy2hIv3V9lChoBmgJaA9DCOwS1VsDuwDAlIaUUpRoFUsyaBZHQKeBzoX9BKN1fZQoaAZoCWgPQwiFPljGhu4FwJSGlFKUaBVLMmgWR0Cng5mxdIGydX2UKGgGaAloD0MIWJI81/fBAMCUhpRSlGgVSzJoFkdAp4NXkHUtqnV9lChoBmgJaA9DCOxsyD8zCATAlIaUUpRoFUsyaBZHQKeDFs+FDfF1fZQoaAZoCWgPQwjFHAQdrSoEwJSGlFKUaBVLMmgWR0CngtRVhkRSdX2UKGgGaAloD0MIEHf1KjJ6/L+UhpRSlGgVSzJoFkdAp4Uvww0wanV9lChoBmgJaA9DCPzepj/7UQTAlIaUUpRoFUsyaBZHQKeE7X8O09h1fZQoaAZoCWgPQwjyXyAIkKH6v5SGlFKUaBVLMmgWR0CnhK07Sy+pdX2UKGgGaAloD0MIvtnmxvQkAcCUhpRSlGgVSzJoFkdAp4Rqe7L+xXV9lChoBmgJaA9DCKciFcYWAvq/lIaUUpRoFUsyaBZHQKeHATjebd91fZQoaAZoCWgPQwgqVaLsLaXyv5SGlFKUaBVLMmgWR0Cnhr8JD3M7dX2UKGgGaAloD0MI2/0qwHfb+L+UhpRSlGgVSzJoFkdAp4Z/Olfqo3V9lChoBmgJaA9DCIz1DUxuVPe/lIaUUpRoFUsyaBZHQKeGPN/OMVF1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f010c409ca0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f010c3f3f60>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 2000000,
45
+ "_total_timesteps": 2000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1676423289363097026,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYVbYPnX1Prt2NhQ/YVbYPnX1Prt2NhQ/YVbYPnX1Prt2NhQ/YVbYPnX1Prt2NhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz8A8vvoTyj/yK6a/nDTTv90LwD5g77u+bGjHPnyckj9ob9G/J8W4v1nK3z2WVh2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhVtg+dfU+u3Y2FD/j2so65bS/Oi9s3jthVtg+dfU+u3Y2FD/j2so65bS/Oi9s3jthVtg+dfU+u3Y2FD/j2so65bS/Oi9s3jthVtg+dfU+u3Y2FD/j2so65bS/Oi9s3juUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.42253402 -0.0029138 0.578956 ]\n [ 0.42253402 -0.0029138 0.578956 ]\n [ 0.42253402 -0.0029138 0.578956 ]\n [ 0.42253402 -0.0029138 0.578956 ]]",
60
+ "desired_goal": "[[-0.18432926 1.5787346 -1.2982161 ]\n [-1.650043 0.3750905 -0.36706066]\n [ 0.38946855 1.1454005 -1.6362123 ]\n [-1.4435166 0.10927267 -0.61460245]]",
61
+ "observation": "[[ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]\n [ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]\n [ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]\n [ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABgw/vBx16TtthkQ9KSnKvUqToz2nJj0+KN6mPVJbqb0MWtc9VhmhPB2CHb0pAm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.01166058 0.00712456 0.04797976]\n [-0.09871132 0.07987078 0.18471776]\n [ 0.08147842 -0.08269371 0.10515222]\n [ 0.0196654 -0.03845416 0.23243012]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrYVZaOf0B8CUhpRSlIwBbJRLMowBdJRHQL7k0P8AJcB1fZQoaAZoCWgPQwiCVmDI6hYKwJSGlFKUaBVLMmgWR0C+5KKlYU35dX2UKGgGaAloD0MIDkktlEwuDcCUhpRSlGgVSzJoFkdAvuRozfrKNnV9lChoBmgJaA9DCI9srprn6BDAlIaUUpRoFUsyaBZHQL7kNERradt1fZQoaAZoCWgPQwjuzATDueYNwJSGlFKUaBVLMmgWR0C+5WceKbazdX2UKGgGaAloD0MIN2+cFObtEMCUhpRSlGgVSzJoFkdAvuU4yLyc1HV9lChoBmgJaA9DCJwzorQ3GAnAlIaUUpRoFUsyaBZHQL7k/tKqXF91fZQoaAZoCWgPQwi/gcmNIqsNwJSGlFKUaBVLMmgWR0C+5Mpc9nscdX2UKGgGaAloD0MIt3u5T46iCMCUhpRSlGgVSzJoFkdAvuX6JTER8XV9lChoBmgJaA9DCF96+3PRQBDAlIaUUpRoFUsyaBZHQL7ly8mrsB11fZQoaAZoCWgPQwhgzJasiqAYwJSGlFKUaBVLMmgWR0C+5ZHW8RL9dX2UKGgGaAloD0MI2c2MfjQcC8CUhpRSlGgVSzJoFkdAvuVdP1tfonV9lChoBmgJaA9DCNrIdVPKqwzAlIaUUpRoFUsyaBZHQL7mi69kBjp1fZQoaAZoCWgPQwiSkh6GVqcLwJSGlFKUaBVLMmgWR0C+5l1Yp2ECdX2UKGgGaAloD0MImIi3zr/dCsCUhpRSlGgVSzJoFkdAvuYjcN6PbXV9lChoBmgJaA9DCIz34/bLhw/AlIaUUpRoFUsyaBZHQL7l7tI065p1fZQoaAZoCWgPQwjvchHfiRkNwJSGlFKUaBVLMmgWR0C+5x+UD+zddX2UKGgGaAloD0MIv2GiQQo+DMCUhpRSlGgVSzJoFkdAvubxZyMkyHV9lChoBmgJaA9DCJtZSwFpPxbAlIaUUpRoFUsyaBZHQL7mt5kK/mF1fZQoaAZoCWgPQwiWPnRBfesHwJSGlFKUaBVLMmgWR0C+5oMibDuSdX2UKGgGaAloD0MIXCBB8WNcEMCUhpRSlGgVSzJoFkdAvue4ZdfLLnV9lChoBmgJaA9DCHqLh/ccWAbAlIaUUpRoFUsyaBZHQL7nihHLA591fZQoaAZoCWgPQwgNObaeIfwQwJSGlFKUaBVLMmgWR0C+51AoPTXrdX2UKGgGaAloD0MIwyy0c5oFBsCUhpRSlGgVSzJoFkdAvucbkwN9Y3V9lChoBmgJaA9DCAETuHU3bw7AlIaUUpRoFUsyaBZHQL7oUtihFmZ1fZQoaAZoCWgPQwgJ4jycwFQMwJSGlFKUaBVLMmgWR0C+6CSaJAMVdX2UKGgGaAloD0MInYNnQpNkA8CUhpRSlGgVSzJoFkdAvufqtT1kD3V9lChoBmgJaA9DCC5XPzbJzwzAlIaUUpRoFUsyaBZHQL7ntjMmnfl1fZQoaAZoCWgPQwg9u3zrwyoTwJSGlFKUaBVLMmgWR0C+6O7VFx4qdX2UKGgGaAloD0MIfqoKDcRyEcCUhpRSlGgVSzJoFkdAvujAmdAgPnV9lChoBmgJaA9DCHHmV3OAYBDAlIaUUpRoFUsyaBZHQL7ohukDZDl1fZQoaAZoCWgPQwihgVg2c7gSwJSGlFKUaBVLMmgWR0C+6FJaq0dBdX2UKGgGaAloD0MInGwDd6CuD8CUhpRSlGgVSzJoFkdAvumE5+6RQ3V9lChoBmgJaA9DCFn60AX1bQzAlIaUUpRoFUsyaBZHQL7pVois4kx1fZQoaAZoCWgPQwiI9NvXgfMGwJSGlFKUaBVLMmgWR0C+6RyhJyyVdX2UKGgGaAloD0MIp+hILv+hC8CUhpRSlGgVSzJoFkdAvujoH6dlNHV9lChoBmgJaA9DCNKL2v0qgAfAlIaUUpRoFUsyaBZHQL7qGO9FnZl1fZQoaAZoCWgPQwjYnlkSoHYQwJSGlFKUaBVLMmgWR0C+6eqVt4zKdX2UKGgGaAloD0MIYizTLxGPDcCUhpRSlGgVSzJoFkdAvumwrmQr+nV9lChoBmgJaA9DCFD7rZ0oqQnAlIaUUpRoFUsyaBZHQL7pfBI4EOl1fZQoaAZoCWgPQwjw+PauQb8JwJSGlFKUaBVLMmgWR0C+6vWK64DtdX2UKGgGaAloD0MIpKXydoTTEMCUhpRSlGgVSzJoFkdAvurHmJWNm3V9lChoBmgJaA9DCHldv2A3DArAlIaUUpRoFUsyaBZHQL7qjhegL7Z1fZQoaAZoCWgPQwikiuJV1hYHwJSGlFKUaBVLMmgWR0C+6lnnU2DQdX2UKGgGaAloD0MIXrwft19eEMCUhpRSlGgVSzJoFkdAvuvksCkoF3V9lChoBmgJaA9DCMqkhjYA+wfAlIaUUpRoFUsyaBZHQL7rtvPC2tx1fZQoaAZoCWgPQwh3Mc10r7MIwJSGlFKUaBVLMmgWR0C+6317x/d7dX2UKGgGaAloD0MILquwGeBCG8CUhpRSlGgVSzJoFkdAvutJlJ6IFnV9lChoBmgJaA9DCFjk1w+xYQ7AlIaUUpRoFUsyaBZHQL7s1M1TBIp1fZQoaAZoCWgPQwiBeciUDwEOwJSGlFKUaBVLMmgWR0C+7KbblA/tdX2UKGgGaAloD0MIL2mM1lH1DMCUhpRSlGgVSzJoFkdAvuxtVuJk5XV9lChoBmgJaA9DCJ3ZrtAHSwvAlIaUUpRoFUsyaBZHQL7sOiYsunN1fZQoaAZoCWgPQwgPf03WqEcPwJSGlFKUaBVLMmgWR0C+7c5lOGj9dX2UKGgGaAloD0MIU1p/SwDeDMCUhpRSlGgVSzJoFkdAvu2gjKPn0XV9lChoBmgJaA9DCLgDdcqjuw7AlIaUUpRoFUsyaBZHQL7tZxREWqN1fZQoaAZoCWgPQwjqXFFKCFYRwJSGlFKUaBVLMmgWR0C+7TLtu1nedX2UKGgGaAloD0MIpmH4iJjCEcCUhpRSlGgVSzJoFkdAvu7Ekt29tnV9lChoBmgJaA9DCBam7zUENxDAlIaUUpRoFUsyaBZHQL7ulrWRRuV1fZQoaAZoCWgPQwhkdEAS9o0MwJSGlFKUaBVLMmgWR0C+7l1P8AJcdX2UKGgGaAloD0MIEAh0Jm1qDMCUhpRSlGgVSzJoFkdAvu4pJGvwE3V9lChoBmgJaA9DCOm2RC44AwrAlIaUUpRoFUsyaBZHQL7vwqSowVV1fZQoaAZoCWgPQwjqzD0kfK8HwJSGlFKUaBVLMmgWR0C+75TbzshQdX2UKGgGaAloD0MIn7DEA8rmD8CUhpRSlGgVSzJoFkdAvu9bgZTAFnV9lChoBmgJaA9DCEZ6UbtfNRXAlIaUUpRoFUsyaBZHQL7vJ2NNrTJ1fZQoaAZoCWgPQwjr4jYawEsSwJSGlFKUaBVLMmgWR0C+8MF49ovjdX2UKGgGaAloD0MI0c5pFmjXCcCUhpRSlGgVSzJoFkdAvvCTxri2lXV9lChoBmgJaA9DCD5d3bHYBgzAlIaUUpRoFUsyaBZHQL7wWmYBvJl1fZQoaAZoCWgPQwi1iZP7HSoLwJSGlFKUaBVLMmgWR0C+8CZEUj9odX2UKGgGaAloD0MILZljeVfdCMCUhpRSlGgVSzJoFkdAvvFdcOby6XV9lChoBmgJaA9DCHb8FwgChAnAlIaUUpRoFUsyaBZHQL7xLx0+1Sh1fZQoaAZoCWgPQwiV8e8zLlwGwJSGlFKUaBVLMmgWR0C+8PUm+j/NdX2UKGgGaAloD0MIMNY3MLmxCMCUhpRSlGgVSzJoFkdAvvDAkB0ZFXV9lChoBmgJaA9DCItuvaYHJQjAlIaUUpRoFUsyaBZHQL7x8tpVS4x1fZQoaAZoCWgPQwjtKw/SU4QKwJSGlFKUaBVLMmgWR0C+8cSGSIP9dX2UKGgGaAloD0MI1CmPboRlBsCUhpRSlGgVSzJoFkdAvvGKmqHXVnV9lChoBmgJaA9DCLkZbsDnxxPAlIaUUpRoFUsyaBZHQL7xVgPEsJ91fZQoaAZoCWgPQwi/Y3jsZzELwJSGlFKUaBVLMmgWR0C+8or8m8dxdX2UKGgGaAloD0MIJxdjYB3nCMCUhpRSlGgVSzJoFkdAvvJcqrilznV9lChoBmgJaA9DCI8aE2IuGRHAlIaUUpRoFUsyaBZHQL7yIr6ciGF1fZQoaAZoCWgPQwiS6ju/KNEZwJSGlFKUaBVLMmgWR0C+8e4j0L+hdX2UKGgGaAloD0MIXr2KjA7oE8CUhpRSlGgVSzJoFkdAvvMfMJQcgnV9lChoBmgJaA9DCErP9BJjWQbAlIaUUpRoFUsyaBZHQL7y8ODJ2dN1fZQoaAZoCWgPQwibkUHuIlwRwJSGlFKUaBVLMmgWR0C+8rb52yLRdX2UKGgGaAloD0MIFVeVfVfECcCUhpRSlGgVSzJoFkdAvvKCZYxL03V9lChoBmgJaA9DCEikbfyJehDAlIaUUpRoFUsyaBZHQL7zsh4dIXl1fZQoaAZoCWgPQwjRQCybOYQGwJSGlFKUaBVLMmgWR0C+84PFBIFvdX2UKGgGaAloD0MI66nVV1d1EMCUhpRSlGgVSzJoFkdAvvNJ5NXYDnV9lChoBmgJaA9DCIWxhSAHBQrAlIaUUpRoFUsyaBZHQL7zFVWjoIR1fZQoaAZoCWgPQwg6PlqcMcwLwJSGlFKUaBVLMmgWR0C+9EI150KadX2UKGgGaAloD0MIhgK2gxF7BcCUhpRSlGgVSzJoFkdAvvQT2PDHfnV9lChoBmgJaA9DCJ9afXVVoA/AlIaUUpRoFUsyaBZHQL7z2ebutwJ1fZQoaAZoCWgPQwhZar3faOcFwJSGlFKUaBVLMmgWR0C+86VXaJyidX2UKGgGaAloD0MId9hEZi6wCMCUhpRSlGgVSzJoFkdAvvTUan7523V9lChoBmgJaA9DCFd8Q+GztQXAlIaUUpRoFUsyaBZHQL70phUR3/x1fZQoaAZoCWgPQwiqKck6HJ0PwJSGlFKUaBVLMmgWR0C+9GwrDqGDdX2UKGgGaAloD0MISYYcW8+QD8CUhpRSlGgVSzJoFkdAvvQ3wZwXInV9lChoBmgJaA9DCF3Cobd42AnAlIaUUpRoFUsyaBZHQL71ZDF6zE91fZQoaAZoCWgPQwjKbfse9dcIwJSGlFKUaBVLMmgWR0C+9TYHs1KodX2UKGgGaAloD0MIIGCt2jXBDMCUhpRSlGgVSzJoFkdAvvT8L6UJOXV9lChoBmgJaA9DCHJRLSKKmRDAlIaUUpRoFUsyaBZHQL70x7muDBd1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 100000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:693c596b0e1b2e3ab40b06f1652455a338eac3e3595f44b7ffc83f42b2ef712c
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0d5918b1a405fe0d2f35dec93b530ffb5e762c75ef0d8434c31f4a3e94c2188
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f2da7fa962d65364d3bc60b03ba1af359402bb05d2d254bf71d14639e3b4ac2
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32026d9a36bae8db774c5139685a9decb5b1bcb4d3df5cf7b8a5a55fcb7743d9
3
+ size 45886
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@
2
  - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
- - GPU Enabled: True
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
 
2
  - Python: 3.8.10
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
  - Numpy: 1.21.6
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0555308af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f055530a2d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676347191472670622, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANmXVP3cHuL5vsts/5nsHv4RzNj+ytV4/tY6lv8z0mL8cy4Y/25qWP1+aUD+2FY2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]]", "desired_goal": "[[ 1.6671512 -0.35943195 1.7163829 ]\n [-0.5292343 0.7127001 0.86995995]\n [-1.2934176 -1.1949706 1.0530734 ]\n [ 1.1766008 0.8148555 -1.1022251 ]]", "observation": "[[ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMjrqvQ/uDT4AIn09R32OPflnHr0hipA9fddJvXMc0LwvMr888mnMPa5I873OgAo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11436881 0.13860343 0.0618 ]\n [ 0.06957489 -0.03867337 0.07057596]\n [-0.04927777 -0.02540419 0.02333936]\n [ 0.09981145 -0.11879097 0.13525698]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9h/nZsWAsCUhpRSlIwBbJRLMowBdJRHQKdtOT8HfMx1fZQoaAZoCWgPQwhMx5xn7IsJwJSGlFKUaBVLMmgWR0CnbPbzshPkdX2UKGgGaAloD0MIYvay7bR1FMCUhpRSlGgVSzJoFkdAp2y2vwEyL3V9lChoBmgJaA9DCKKakqzD8QDAlIaUUpRoFUsyaBZHQKdsdD4QBgh1fZQoaAZoCWgPQwheDybFx+cEwJSGlFKUaBVLMmgWR0CnbsYUnG83dX2UKGgGaAloD0MIayqLwi7K/7+UhpRSlGgVSzJoFkdAp26DzCk43nV9lChoBmgJaA9DCLqilBCsSgbAlIaUUpRoFUsyaBZHQKduQyfL9uR1fZQoaAZoCWgPQwjJc30fDpIJwJSGlFKUaBVLMmgWR0CnbgBgeA/cdX2UKGgGaAloD0MITU2CN6SRB8CUhpRSlGgVSzJoFkdAp2/qREF4cHV9lChoBmgJaA9DCJG6nX3lwf2/lIaUUpRoFUsyaBZHQKdvp6By0a91fZQoaAZoCWgPQwieRe9UwL36v5SGlFKUaBVLMmgWR0Cnb2ZMtbs4dX2UKGgGaAloD0MIchk3NdD897+UhpRSlGgVSzJoFkdAp28jOE/SpnV9lChoBmgJaA9DCPqa5bLR+QXAlIaUUpRoFUsyaBZHQKdw99GZuyh1fZQoaAZoCWgPQwiR7ucU5McKwJSGlFKUaBVLMmgWR0CncLUCaJAMdX2UKGgGaAloD0MIUkSGVbxBEMCUhpRSlGgVSzJoFkdAp3BzxiG34XV9lChoBmgJaA9DCInvxKwXYxDAlIaUUpRoFUsyaBZHQKdwMMMI/qx1fZQoaAZoCWgPQwhyhuKON/nyv5SGlFKUaBVLMmgWR0CncfbQswtbdX2UKGgGaAloD0MIAfp9/+YF+7+UhpRSlGgVSzJoFkdAp3G0FMZgonV9lChoBmgJaA9DCIOG/gkulgXAlIaUUpRoFUsyaBZHQKdxcstkFwF1fZQoaAZoCWgPQwhqM05DVAEEwJSGlFKUaBVLMmgWR0CncS+5nUUgdX2UKGgGaAloD0MIiq4LPzgfCcCUhpRSlGgVSzJoFkdAp3LwhQm/nHV9lChoBmgJaA9DCGN/2T15GP6/lIaUUpRoFUsyaBZHQKdyreQ+2Vp1fZQoaAZoCWgPQwhMxjGSPeIDwJSGlFKUaBVLMmgWR0Cncmyd4FA3dX2UKGgGaAloD0MIj8TL07mCBcCUhpRSlGgVSzJoFkdAp3IpavA443V9lChoBmgJaA9DCPiL2ZJVMQjAlIaUUpRoFUsyaBZHQKdz7SZSeiB1fZQoaAZoCWgPQwi1No3ttSADwJSGlFKUaBVLMmgWR0Cnc6o6S1VpdX2UKGgGaAloD0MIOpZ31QOmCMCUhpRSlGgVSzJoFkdAp3No3rD633V9lChoBmgJaA9DCADHnj2XKQ7AlIaUUpRoFUsyaBZHQKdzJcZ9/jN1fZQoaAZoCWgPQwgs1QW8zHD6v5SGlFKUaBVLMmgWR0CndPR3V09ydX2UKGgGaAloD0MIOQ1RhT8jB8CUhpRSlGgVSzJoFkdAp3SxjpcHGHV9lChoBmgJaA9DCIOnkCv1rPK/lIaUUpRoFUsyaBZHQKd0cGdI5HV1fZQoaAZoCWgPQwhLrfcb7Tjvv5SGlFKUaBVLMmgWR0CndC029+PSdX2UKGgGaAloD0MIFRxeEJFaCMCUhpRSlGgVSzJoFkdAp3XiYRdyDXV9lChoBmgJaA9DCAETuHU3T+y/lIaUUpRoFUsyaBZHQKd1n4Oc2BJ1fZQoaAZoCWgPQwheTZ6ymq74v5SGlFKUaBVLMmgWR0CndV5ElVtGdX2UKGgGaAloD0MIcxHfiVkv8r+UhpRSlGgVSzJoFkdAp3Ua+BYms3V9lChoBmgJaA9DCAdfmEwVDP6/lIaUUpRoFUsyaBZHQKd22TEit7t1fZQoaAZoCWgPQwj8OQX52agPwJSGlFKUaBVLMmgWR0CndpZP2wmmdX2UKGgGaAloD0MINIXOa+zS+7+UhpRSlGgVSzJoFkdAp3ZU/dIoVnV9lChoBmgJaA9DCDZbecn/ZALAlIaUUpRoFUsyaBZHQKd2EafjCHh1fZQoaAZoCWgPQwjU1R2LbbIKwJSGlFKUaBVLMmgWR0Cnd84sd1dPdX2UKGgGaAloD0MIvTlcqz2MCsCUhpRSlGgVSzJoFkdAp3eLiqABk3V9lChoBmgJaA9DCPhQoiWPJwfAlIaUUpRoFUsyaBZHQKd3Skl/pdN1fZQoaAZoCWgPQwiPOGQD6eL5v5SGlFKUaBVLMmgWR0CndwbdznzQdX2UKGgGaAloD0MIr2Ab8WQXA8CUhpRSlGgVSzJoFkdAp3jLCYTkAHV9lChoBmgJaA9DCDCCxkyiXv2/lIaUUpRoFUsyaBZHQKd4iAmzByl1fZQoaAZoCWgPQwgdy7vqATMNwJSGlFKUaBVLMmgWR0CneEbuMMqjdX2UKGgGaAloD0MID7dDw2I0CcCUhpRSlGgVSzJoFkdAp3gD06HTJHV9lChoBmgJaA9DCNNqSNxj6f2/lIaUUpRoFUsyaBZHQKd5vSGahHt1fZQoaAZoCWgPQwhCdt7GZkf8v5SGlFKUaBVLMmgWR0CneXpQDV6NdX2UKGgGaAloD0MI4Lw48dVO8b+UhpRSlGgVSzJoFkdAp3k5H7P6bnV9lChoBmgJaA9DCEXXhR+cTwPAlIaUUpRoFUsyaBZHQKd49hzeXRh1fZQoaAZoCWgPQwjBV3TrNb0AwJSGlFKUaBVLMmgWR0CnerHUc4o7dX2UKGgGaAloD0MIegCL/Poh7b+UhpRSlGgVSzJoFkdAp3pvB+F10XV9lChoBmgJaA9DCCy2SUVjbe6/lIaUUpRoFUsyaBZHQKd6Lc5bQkZ1fZQoaAZoCWgPQwhFSrN5HEb0v5SGlFKUaBVLMmgWR0CneeqGlANYdX2UKGgGaAloD0MI0/avrDSp9L+UhpRSlGgVSzJoFkdAp3uroIOYpnV9lChoBmgJaA9DCB0+6USC6fi/lIaUUpRoFUsyaBZHQKd7aOaOPvN1fZQoaAZoCWgPQwjy64fYYGEAwJSGlFKUaBVLMmgWR0CneyeQ2dd3dX2UKGgGaAloD0MIVoFaDB4GAcCUhpRSlGgVSzJoFkdAp3rkRvm5lXV9lChoBmgJaA9DCGjPZWoSvAbAlIaUUpRoFUsyaBZHQKd8ritJWeZ1fZQoaAZoCWgPQwiv0t11NqQHwJSGlFKUaBVLMmgWR0CnfGt5MURGdX2UKGgGaAloD0MIg8KgTKPpC8CUhpRSlGgVSzJoFkdAp3wqZQYUFnV9lChoBmgJaA9DCHwpPGh2HRDAlIaUUpRoFUsyaBZHQKd75yoXKr91fZQoaAZoCWgPQwjZ7bPKTCkAwJSGlFKUaBVLMmgWR0CnfbvJ7sv7dX2UKGgGaAloD0MI1IIXfQXpAcCUhpRSlGgVSzJoFkdAp315HLA573V9lChoBmgJaA9DCEBQbtv3CATAlIaUUpRoFUsyaBZHQKd9OCRwIdF1fZQoaAZoCWgPQwgqqKj6lc4EwJSGlFKUaBVLMmgWR0CnfPUfozN2dX2UKGgGaAloD0MI3j6rzJQW/b+UhpRSlGgVSzJoFkdAp36+dqcmSnV9lChoBmgJaA9DCNODglK0UgPAlIaUUpRoFUsyaBZHQKd+e4EwFkh1fZQoaAZoCWgPQwjIJ2TnbWwIwJSGlFKUaBVLMmgWR0CnfjqMm4RVdX2UKGgGaAloD0MICVOUS+MXBsCUhpRSlGgVSzJoFkdAp333Ot4iYHV9lChoBmgJaA9DCH4dOGdE6fG/lIaUUpRoFUsyaBZHQKd/s9+PRzB1fZQoaAZoCWgPQwg2PL1SlmHyv5SGlFKUaBVLMmgWR0Cnf3DneSB9dX2UKGgGaAloD0MIVrd6TnqfDMCUhpRSlGgVSzJoFkdAp38vvH93r3V9lChoBmgJaA9DCPqZet0i0AnAlIaUUpRoFUsyaBZHQKd+7H/cWTJ1fZQoaAZoCWgPQwjpfeNrz6wBwJSGlFKUaBVLMmgWR0CngKINEw36dX2UKGgGaAloD0MIdlH0wMfACMCUhpRSlGgVSzJoFkdAp4BfGOuJUHV9lChoBmgJaA9DCEC/79+8eATAlIaUUpRoFUsyaBZHQKeAHfl6qsF1fZQoaAZoCWgPQwjTEcDN4uUBwJSGlFKUaBVLMmgWR0Cnf9rFwT/RdX2UKGgGaAloD0MI547+l2uxB8CUhpRSlGgVSzJoFkdAp4GcRaouPHV9lChoBmgJaA9DCKCM8WH28va/lIaUUpRoFUsyaBZHQKeBWXrMTvl1fZQoaAZoCWgPQwgydsJLcKr/v5SGlFKUaBVLMmgWR0CngRhwdbPhdX2UKGgGaAloD0MIhxqFJLO6/7+UhpRSlGgVSzJoFkdAp4DVTP0I1XV9lChoBmgJaA9DCCU8odefZAXAlIaUUpRoFUsyaBZHQKeCldD6WPd1fZQoaAZoCWgPQwjle0YiNOIGwJSGlFKUaBVLMmgWR0CnglM0gr6MdX2UKGgGaAloD0MIkuwRaoZUAsCUhpRSlGgVSzJoFkdAp4IRy2hIv3V9lChoBmgJaA9DCOwS1VsDuwDAlIaUUpRoFUsyaBZHQKeBzoX9BKN1fZQoaAZoCWgPQwiFPljGhu4FwJSGlFKUaBVLMmgWR0Cng5mxdIGydX2UKGgGaAloD0MIWJI81/fBAMCUhpRSlGgVSzJoFkdAp4NXkHUtqnV9lChoBmgJaA9DCOxsyD8zCATAlIaUUpRoFUsyaBZHQKeDFs+FDfF1fZQoaAZoCWgPQwjFHAQdrSoEwJSGlFKUaBVLMmgWR0CngtRVhkRSdX2UKGgGaAloD0MIEHf1KjJ6/L+UhpRSlGgVSzJoFkdAp4Uvww0wanV9lChoBmgJaA9DCPzepj/7UQTAlIaUUpRoFUsyaBZHQKeE7X8O09h1fZQoaAZoCWgPQwjyXyAIkKH6v5SGlFKUaBVLMmgWR0CnhK07Sy+pdX2UKGgGaAloD0MIvtnmxvQkAcCUhpRSlGgVSzJoFkdAp4Rqe7L+xXV9lChoBmgJaA9DCKciFcYWAvq/lIaUUpRoFUsyaBZHQKeHATjebd91fZQoaAZoCWgPQwgqVaLsLaXyv5SGlFKUaBVLMmgWR0Cnhr8JD3M7dX2UKGgGaAloD0MI2/0qwHfb+L+UhpRSlGgVSzJoFkdAp4Z/Olfqo3V9lChoBmgJaA9DCIz1DUxuVPe/lIaUUpRoFUsyaBZHQKeGPN/OMVF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f010c409ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f010c3f3f60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676423289363097026, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYVbYPnX1Prt2NhQ/YVbYPnX1Prt2NhQ/YVbYPnX1Prt2NhQ/YVbYPnX1Prt2NhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz8A8vvoTyj/yK6a/nDTTv90LwD5g77u+bGjHPnyckj9ob9G/J8W4v1nK3z2WVh2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABhVtg+dfU+u3Y2FD/j2so65bS/Oi9s3jthVtg+dfU+u3Y2FD/j2so65bS/Oi9s3jthVtg+dfU+u3Y2FD/j2so65bS/Oi9s3jthVtg+dfU+u3Y2FD/j2so65bS/Oi9s3juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42253402 -0.0029138 0.578956 ]\n [ 0.42253402 -0.0029138 0.578956 ]\n [ 0.42253402 -0.0029138 0.578956 ]\n [ 0.42253402 -0.0029138 0.578956 ]]", "desired_goal": "[[-0.18432926 1.5787346 -1.2982161 ]\n [-1.650043 0.3750905 -0.36706066]\n [ 0.38946855 1.1454005 -1.6362123 ]\n [-1.4435166 0.10927267 -0.61460245]]", "observation": "[[ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]\n [ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]\n [ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]\n [ 0.42253402 -0.0029138 0.578956 0.00154766 0.00146261 0.0067878 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABgw/vBx16TtthkQ9KSnKvUqToz2nJj0+KN6mPVJbqb0MWtc9VhmhPB2CHb0pAm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01166058 0.00712456 0.04797976]\n [-0.09871132 0.07987078 0.18471776]\n [ 0.08147842 -0.08269371 0.10515222]\n [ 0.0196654 -0.03845416 0.23243012]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrYVZaOf0B8CUhpRSlIwBbJRLMowBdJRHQL7k0P8AJcB1fZQoaAZoCWgPQwiCVmDI6hYKwJSGlFKUaBVLMmgWR0C+5KKlYU35dX2UKGgGaAloD0MIDkktlEwuDcCUhpRSlGgVSzJoFkdAvuRozfrKNnV9lChoBmgJaA9DCI9srprn6BDAlIaUUpRoFUsyaBZHQL7kNERradt1fZQoaAZoCWgPQwjuzATDueYNwJSGlFKUaBVLMmgWR0C+5WceKbazdX2UKGgGaAloD0MIN2+cFObtEMCUhpRSlGgVSzJoFkdAvuU4yLyc1HV9lChoBmgJaA9DCJwzorQ3GAnAlIaUUpRoFUsyaBZHQL7k/tKqXF91fZQoaAZoCWgPQwi/gcmNIqsNwJSGlFKUaBVLMmgWR0C+5Mpc9nscdX2UKGgGaAloD0MIt3u5T46iCMCUhpRSlGgVSzJoFkdAvuX6JTER8XV9lChoBmgJaA9DCF96+3PRQBDAlIaUUpRoFUsyaBZHQL7ly8mrsB11fZQoaAZoCWgPQwhgzJasiqAYwJSGlFKUaBVLMmgWR0C+5ZHW8RL9dX2UKGgGaAloD0MI2c2MfjQcC8CUhpRSlGgVSzJoFkdAvuVdP1tfonV9lChoBmgJaA9DCNrIdVPKqwzAlIaUUpRoFUsyaBZHQL7mi69kBjp1fZQoaAZoCWgPQwiSkh6GVqcLwJSGlFKUaBVLMmgWR0C+5l1Yp2ECdX2UKGgGaAloD0MImIi3zr/dCsCUhpRSlGgVSzJoFkdAvuYjcN6PbXV9lChoBmgJaA9DCIz34/bLhw/AlIaUUpRoFUsyaBZHQL7l7tI065p1fZQoaAZoCWgPQwjvchHfiRkNwJSGlFKUaBVLMmgWR0C+5x+UD+zddX2UKGgGaAloD0MIv2GiQQo+DMCUhpRSlGgVSzJoFkdAvubxZyMkyHV9lChoBmgJaA9DCJtZSwFpPxbAlIaUUpRoFUsyaBZHQL7mt5kK/mF1fZQoaAZoCWgPQwiWPnRBfesHwJSGlFKUaBVLMmgWR0C+5oMibDuSdX2UKGgGaAloD0MIXCBB8WNcEMCUhpRSlGgVSzJoFkdAvue4ZdfLLnV9lChoBmgJaA9DCHqLh/ccWAbAlIaUUpRoFUsyaBZHQL7nihHLA591fZQoaAZoCWgPQwgNObaeIfwQwJSGlFKUaBVLMmgWR0C+51AoPTXrdX2UKGgGaAloD0MIwyy0c5oFBsCUhpRSlGgVSzJoFkdAvucbkwN9Y3V9lChoBmgJaA9DCAETuHU3bw7AlIaUUpRoFUsyaBZHQL7oUtihFmZ1fZQoaAZoCWgPQwgJ4jycwFQMwJSGlFKUaBVLMmgWR0C+6CSaJAMVdX2UKGgGaAloD0MInYNnQpNkA8CUhpRSlGgVSzJoFkdAvufqtT1kD3V9lChoBmgJaA9DCC5XPzbJzwzAlIaUUpRoFUsyaBZHQL7ntjMmnfl1fZQoaAZoCWgPQwg9u3zrwyoTwJSGlFKUaBVLMmgWR0C+6O7VFx4qdX2UKGgGaAloD0MIfqoKDcRyEcCUhpRSlGgVSzJoFkdAvujAmdAgPnV9lChoBmgJaA9DCHHmV3OAYBDAlIaUUpRoFUsyaBZHQL7ohukDZDl1fZQoaAZoCWgPQwihgVg2c7gSwJSGlFKUaBVLMmgWR0C+6FJaq0dBdX2UKGgGaAloD0MInGwDd6CuD8CUhpRSlGgVSzJoFkdAvumE5+6RQ3V9lChoBmgJaA9DCFn60AX1bQzAlIaUUpRoFUsyaBZHQL7pVois4kx1fZQoaAZoCWgPQwiI9NvXgfMGwJSGlFKUaBVLMmgWR0C+6RyhJyyVdX2UKGgGaAloD0MIp+hILv+hC8CUhpRSlGgVSzJoFkdAvujoH6dlNHV9lChoBmgJaA9DCNKL2v0qgAfAlIaUUpRoFUsyaBZHQL7qGO9FnZl1fZQoaAZoCWgPQwjYnlkSoHYQwJSGlFKUaBVLMmgWR0C+6eqVt4zKdX2UKGgGaAloD0MIYizTLxGPDcCUhpRSlGgVSzJoFkdAvumwrmQr+nV9lChoBmgJaA9DCFD7rZ0oqQnAlIaUUpRoFUsyaBZHQL7pfBI4EOl1fZQoaAZoCWgPQwjw+PauQb8JwJSGlFKUaBVLMmgWR0C+6vWK64DtdX2UKGgGaAloD0MIpKXydoTTEMCUhpRSlGgVSzJoFkdAvurHmJWNm3V9lChoBmgJaA9DCHldv2A3DArAlIaUUpRoFUsyaBZHQL7qjhegL7Z1fZQoaAZoCWgPQwikiuJV1hYHwJSGlFKUaBVLMmgWR0C+6lnnU2DQdX2UKGgGaAloD0MIXrwft19eEMCUhpRSlGgVSzJoFkdAvuvksCkoF3V9lChoBmgJaA9DCMqkhjYA+wfAlIaUUpRoFUsyaBZHQL7rtvPC2tx1fZQoaAZoCWgPQwh3Mc10r7MIwJSGlFKUaBVLMmgWR0C+6317x/d7dX2UKGgGaAloD0MILquwGeBCG8CUhpRSlGgVSzJoFkdAvutJlJ6IFnV9lChoBmgJaA9DCFjk1w+xYQ7AlIaUUpRoFUsyaBZHQL7s1M1TBIp1fZQoaAZoCWgPQwiBeciUDwEOwJSGlFKUaBVLMmgWR0C+7KbblA/tdX2UKGgGaAloD0MIL2mM1lH1DMCUhpRSlGgVSzJoFkdAvuxtVuJk5XV9lChoBmgJaA9DCJ3ZrtAHSwvAlIaUUpRoFUsyaBZHQL7sOiYsunN1fZQoaAZoCWgPQwgPf03WqEcPwJSGlFKUaBVLMmgWR0C+7c5lOGj9dX2UKGgGaAloD0MIU1p/SwDeDMCUhpRSlGgVSzJoFkdAvu2gjKPn0XV9lChoBmgJaA9DCLgDdcqjuw7AlIaUUpRoFUsyaBZHQL7tZxREWqN1fZQoaAZoCWgPQwjqXFFKCFYRwJSGlFKUaBVLMmgWR0C+7TLtu1nedX2UKGgGaAloD0MIpmH4iJjCEcCUhpRSlGgVSzJoFkdAvu7Ekt29tnV9lChoBmgJaA9DCBam7zUENxDAlIaUUpRoFUsyaBZHQL7ulrWRRuV1fZQoaAZoCWgPQwhkdEAS9o0MwJSGlFKUaBVLMmgWR0C+7l1P8AJcdX2UKGgGaAloD0MIEAh0Jm1qDMCUhpRSlGgVSzJoFkdAvu4pJGvwE3V9lChoBmgJaA9DCOm2RC44AwrAlIaUUpRoFUsyaBZHQL7vwqSowVV1fZQoaAZoCWgPQwjqzD0kfK8HwJSGlFKUaBVLMmgWR0C+75TbzshQdX2UKGgGaAloD0MIn7DEA8rmD8CUhpRSlGgVSzJoFkdAvu9bgZTAFnV9lChoBmgJaA9DCEZ6UbtfNRXAlIaUUpRoFUsyaBZHQL7vJ2NNrTJ1fZQoaAZoCWgPQwjr4jYawEsSwJSGlFKUaBVLMmgWR0C+8MF49ovjdX2UKGgGaAloD0MI0c5pFmjXCcCUhpRSlGgVSzJoFkdAvvCTxri2lXV9lChoBmgJaA9DCD5d3bHYBgzAlIaUUpRoFUsyaBZHQL7wWmYBvJl1fZQoaAZoCWgPQwi1iZP7HSoLwJSGlFKUaBVLMmgWR0C+8CZEUj9odX2UKGgGaAloD0MILZljeVfdCMCUhpRSlGgVSzJoFkdAvvFdcOby6XV9lChoBmgJaA9DCHb8FwgChAnAlIaUUpRoFUsyaBZHQL7xLx0+1Sh1fZQoaAZoCWgPQwiV8e8zLlwGwJSGlFKUaBVLMmgWR0C+8PUm+j/NdX2UKGgGaAloD0MIMNY3MLmxCMCUhpRSlGgVSzJoFkdAvvDAkB0ZFXV9lChoBmgJaA9DCItuvaYHJQjAlIaUUpRoFUsyaBZHQL7x8tpVS4x1fZQoaAZoCWgPQwjtKw/SU4QKwJSGlFKUaBVLMmgWR0C+8cSGSIP9dX2UKGgGaAloD0MI1CmPboRlBsCUhpRSlGgVSzJoFkdAvvGKmqHXVnV9lChoBmgJaA9DCLkZbsDnxxPAlIaUUpRoFUsyaBZHQL7xVgPEsJ91fZQoaAZoCWgPQwi/Y3jsZzELwJSGlFKUaBVLMmgWR0C+8or8m8dxdX2UKGgGaAloD0MIJxdjYB3nCMCUhpRSlGgVSzJoFkdAvvJcqrilznV9lChoBmgJaA9DCI8aE2IuGRHAlIaUUpRoFUsyaBZHQL7yIr6ciGF1fZQoaAZoCWgPQwiS6ju/KNEZwJSGlFKUaBVLMmgWR0C+8e4j0L+hdX2UKGgGaAloD0MIXr2KjA7oE8CUhpRSlGgVSzJoFkdAvvMfMJQcgnV9lChoBmgJaA9DCErP9BJjWQbAlIaUUpRoFUsyaBZHQL7y8ODJ2dN1fZQoaAZoCWgPQwibkUHuIlwRwJSGlFKUaBVLMmgWR0C+8rb52yLRdX2UKGgGaAloD0MIFVeVfVfECcCUhpRSlGgVSzJoFkdAvvKCZYxL03V9lChoBmgJaA9DCEikbfyJehDAlIaUUpRoFUsyaBZHQL7zsh4dIXl1fZQoaAZoCWgPQwjRQCybOYQGwJSGlFKUaBVLMmgWR0C+84PFBIFvdX2UKGgGaAloD0MI66nVV1d1EMCUhpRSlGgVSzJoFkdAvvNJ5NXYDnV9lChoBmgJaA9DCIWxhSAHBQrAlIaUUpRoFUsyaBZHQL7zFVWjoIR1fZQoaAZoCWgPQwg6PlqcMcwLwJSGlFKUaBVLMmgWR0C+9EI150KadX2UKGgGaAloD0MIhgK2gxF7BcCUhpRSlGgVSzJoFkdAvvQT2PDHfnV9lChoBmgJaA9DCJ9afXVVoA/AlIaUUpRoFUsyaBZHQL7z2ebutwJ1fZQoaAZoCWgPQwhZar3faOcFwJSGlFKUaBVLMmgWR0C+86VXaJyidX2UKGgGaAloD0MId9hEZi6wCMCUhpRSlGgVSzJoFkdAvvTUan7523V9lChoBmgJaA9DCFd8Q+GztQXAlIaUUpRoFUsyaBZHQL70phUR3/x1fZQoaAZoCWgPQwiqKck6HJ0PwJSGlFKUaBVLMmgWR0C+9GwrDqGDdX2UKGgGaAloD0MISYYcW8+QD8CUhpRSlGgVSzJoFkdAvvQ3wZwXInV9lChoBmgJaA9DCF3Cobd42AnAlIaUUpRoFUsyaBZHQL71ZDF6zE91fZQoaAZoCWgPQwjKbfse9dcIwJSGlFKUaBVLMmgWR0C+9TYHs1KodX2UKGgGaAloD0MIIGCt2jXBDMCUhpRSlGgVSzJoFkdAvvT8L6UJOXV9lChoBmgJaA9DCHJRLSKKmRDAlIaUUpRoFUsyaBZHQL70x7muDBd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.350999073404819, "std_reward": 1.2638734414301624, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T04:50:21.723359"}
 
1
+ {"mean_reward": -3.4273668565787374, "std_reward": 0.46045993479202796, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T03:20:17.883523"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f27174715b0e6c93bbc6b1d77d64f000402ea3abbabd2fb58d1d267ad05da559
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f3e6067315bfe6d674805b613cc81ba67856c6d388347bd02b5d4392092d9ed
3
  size 3056