mjschock commited on
Commit
20c59e9
·
1 Parent(s): a3dcd14

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.35 +/- 1.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce24d62906e69c476c696626f3b34676a211c5701333185da5dd611e5f88c487
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0555308af0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f055530a2d0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676347191472670622,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANmXVP3cHuL5vsts/5nsHv4RzNj+ytV4/tY6lv8z0mL8cy4Y/25qWP1+aUD+2FY2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87TuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]]",
60
+ "desired_goal": "[[ 1.6671512 -0.35943195 1.7163829 ]\n [-0.5292343 0.7127001 0.86995995]\n [-1.2934176 -1.1949706 1.0530734 ]\n [ 1.1766008 0.8148555 -1.1022251 ]]",
61
+ "observation": "[[ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMjrqvQ/uDT4AIn09R32OPflnHr0hipA9fddJvXMc0LwvMr888mnMPa5I873OgAo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.11436881 0.13860343 0.0618 ]\n [ 0.06957489 -0.03867337 0.07057596]\n [-0.04927777 -0.02540419 0.02333936]\n [ 0.09981145 -0.11879097 0.13525698]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9h/nZsWAsCUhpRSlIwBbJRLMowBdJRHQKdtOT8HfMx1fZQoaAZoCWgPQwhMx5xn7IsJwJSGlFKUaBVLMmgWR0CnbPbzshPkdX2UKGgGaAloD0MIYvay7bR1FMCUhpRSlGgVSzJoFkdAp2y2vwEyL3V9lChoBmgJaA9DCKKakqzD8QDAlIaUUpRoFUsyaBZHQKdsdD4QBgh1fZQoaAZoCWgPQwheDybFx+cEwJSGlFKUaBVLMmgWR0CnbsYUnG83dX2UKGgGaAloD0MIayqLwi7K/7+UhpRSlGgVSzJoFkdAp26DzCk43nV9lChoBmgJaA9DCLqilBCsSgbAlIaUUpRoFUsyaBZHQKduQyfL9uR1fZQoaAZoCWgPQwjJc30fDpIJwJSGlFKUaBVLMmgWR0CnbgBgeA/cdX2UKGgGaAloD0MITU2CN6SRB8CUhpRSlGgVSzJoFkdAp2/qREF4cHV9lChoBmgJaA9DCJG6nX3lwf2/lIaUUpRoFUsyaBZHQKdvp6By0a91fZQoaAZoCWgPQwieRe9UwL36v5SGlFKUaBVLMmgWR0Cnb2ZMtbs4dX2UKGgGaAloD0MIchk3NdD897+UhpRSlGgVSzJoFkdAp28jOE/SpnV9lChoBmgJaA9DCPqa5bLR+QXAlIaUUpRoFUsyaBZHQKdw99GZuyh1fZQoaAZoCWgPQwiR7ucU5McKwJSGlFKUaBVLMmgWR0CncLUCaJAMdX2UKGgGaAloD0MIUkSGVbxBEMCUhpRSlGgVSzJoFkdAp3BzxiG34XV9lChoBmgJaA9DCInvxKwXYxDAlIaUUpRoFUsyaBZHQKdwMMMI/qx1fZQoaAZoCWgPQwhyhuKON/nyv5SGlFKUaBVLMmgWR0CncfbQswtbdX2UKGgGaAloD0MIAfp9/+YF+7+UhpRSlGgVSzJoFkdAp3G0FMZgonV9lChoBmgJaA9DCIOG/gkulgXAlIaUUpRoFUsyaBZHQKdxcstkFwF1fZQoaAZoCWgPQwhqM05DVAEEwJSGlFKUaBVLMmgWR0CncS+5nUUgdX2UKGgGaAloD0MIiq4LPzgfCcCUhpRSlGgVSzJoFkdAp3LwhQm/nHV9lChoBmgJaA9DCGN/2T15GP6/lIaUUpRoFUsyaBZHQKdyreQ+2Vp1fZQoaAZoCWgPQwhMxjGSPeIDwJSGlFKUaBVLMmgWR0Cncmyd4FA3dX2UKGgGaAloD0MIj8TL07mCBcCUhpRSlGgVSzJoFkdAp3IpavA443V9lChoBmgJaA9DCPiL2ZJVMQjAlIaUUpRoFUsyaBZHQKdz7SZSeiB1fZQoaAZoCWgPQwi1No3ttSADwJSGlFKUaBVLMmgWR0Cnc6o6S1VpdX2UKGgGaAloD0MIOpZ31QOmCMCUhpRSlGgVSzJoFkdAp3No3rD633V9lChoBmgJaA9DCADHnj2XKQ7AlIaUUpRoFUsyaBZHQKdzJcZ9/jN1fZQoaAZoCWgPQwgs1QW8zHD6v5SGlFKUaBVLMmgWR0CndPR3V09ydX2UKGgGaAloD0MIOQ1RhT8jB8CUhpRSlGgVSzJoFkdAp3SxjpcHGHV9lChoBmgJaA9DCIOnkCv1rPK/lIaUUpRoFUsyaBZHQKd0cGdI5HV1fZQoaAZoCWgPQwhLrfcb7Tjvv5SGlFKUaBVLMmgWR0CndC029+PSdX2UKGgGaAloD0MIFRxeEJFaCMCUhpRSlGgVSzJoFkdAp3XiYRdyDXV9lChoBmgJaA9DCAETuHU3T+y/lIaUUpRoFUsyaBZHQKd1n4Oc2BJ1fZQoaAZoCWgPQwheTZ6ymq74v5SGlFKUaBVLMmgWR0CndV5ElVtGdX2UKGgGaAloD0MIcxHfiVkv8r+UhpRSlGgVSzJoFkdAp3Ua+BYms3V9lChoBmgJaA9DCAdfmEwVDP6/lIaUUpRoFUsyaBZHQKd22TEit7t1fZQoaAZoCWgPQwj8OQX52agPwJSGlFKUaBVLMmgWR0CndpZP2wmmdX2UKGgGaAloD0MINIXOa+zS+7+UhpRSlGgVSzJoFkdAp3ZU/dIoVnV9lChoBmgJaA9DCDZbecn/ZALAlIaUUpRoFUsyaBZHQKd2EafjCHh1fZQoaAZoCWgPQwjU1R2LbbIKwJSGlFKUaBVLMmgWR0Cnd84sd1dPdX2UKGgGaAloD0MIvTlcqz2MCsCUhpRSlGgVSzJoFkdAp3eLiqABk3V9lChoBmgJaA9DCPhQoiWPJwfAlIaUUpRoFUsyaBZHQKd3Skl/pdN1fZQoaAZoCWgPQwiPOGQD6eL5v5SGlFKUaBVLMmgWR0CndwbdznzQdX2UKGgGaAloD0MIr2Ab8WQXA8CUhpRSlGgVSzJoFkdAp3jLCYTkAHV9lChoBmgJaA9DCDCCxkyiXv2/lIaUUpRoFUsyaBZHQKd4iAmzByl1fZQoaAZoCWgPQwgdy7vqATMNwJSGlFKUaBVLMmgWR0CneEbuMMqjdX2UKGgGaAloD0MID7dDw2I0CcCUhpRSlGgVSzJoFkdAp3gD06HTJHV9lChoBmgJaA9DCNNqSNxj6f2/lIaUUpRoFUsyaBZHQKd5vSGahHt1fZQoaAZoCWgPQwhCdt7GZkf8v5SGlFKUaBVLMmgWR0CneXpQDV6NdX2UKGgGaAloD0MI4Lw48dVO8b+UhpRSlGgVSzJoFkdAp3k5H7P6bnV9lChoBmgJaA9DCEXXhR+cTwPAlIaUUpRoFUsyaBZHQKd49hzeXRh1fZQoaAZoCWgPQwjBV3TrNb0AwJSGlFKUaBVLMmgWR0CnerHUc4o7dX2UKGgGaAloD0MIegCL/Poh7b+UhpRSlGgVSzJoFkdAp3pvB+F10XV9lChoBmgJaA9DCCy2SUVjbe6/lIaUUpRoFUsyaBZHQKd6Lc5bQkZ1fZQoaAZoCWgPQwhFSrN5HEb0v5SGlFKUaBVLMmgWR0CneeqGlANYdX2UKGgGaAloD0MI0/avrDSp9L+UhpRSlGgVSzJoFkdAp3uroIOYpnV9lChoBmgJaA9DCB0+6USC6fi/lIaUUpRoFUsyaBZHQKd7aOaOPvN1fZQoaAZoCWgPQwjy64fYYGEAwJSGlFKUaBVLMmgWR0CneyeQ2dd3dX2UKGgGaAloD0MIVoFaDB4GAcCUhpRSlGgVSzJoFkdAp3rkRvm5lXV9lChoBmgJaA9DCGjPZWoSvAbAlIaUUpRoFUsyaBZHQKd8ritJWeZ1fZQoaAZoCWgPQwiv0t11NqQHwJSGlFKUaBVLMmgWR0CnfGt5MURGdX2UKGgGaAloD0MIg8KgTKPpC8CUhpRSlGgVSzJoFkdAp3wqZQYUFnV9lChoBmgJaA9DCHwpPGh2HRDAlIaUUpRoFUsyaBZHQKd75yoXKr91fZQoaAZoCWgPQwjZ7bPKTCkAwJSGlFKUaBVLMmgWR0CnfbvJ7sv7dX2UKGgGaAloD0MI1IIXfQXpAcCUhpRSlGgVSzJoFkdAp315HLA573V9lChoBmgJaA9DCEBQbtv3CATAlIaUUpRoFUsyaBZHQKd9OCRwIdF1fZQoaAZoCWgPQwgqqKj6lc4EwJSGlFKUaBVLMmgWR0CnfPUfozN2dX2UKGgGaAloD0MI3j6rzJQW/b+UhpRSlGgVSzJoFkdAp36+dqcmSnV9lChoBmgJaA9DCNODglK0UgPAlIaUUpRoFUsyaBZHQKd+e4EwFkh1fZQoaAZoCWgPQwjIJ2TnbWwIwJSGlFKUaBVLMmgWR0CnfjqMm4RVdX2UKGgGaAloD0MICVOUS+MXBsCUhpRSlGgVSzJoFkdAp333Ot4iYHV9lChoBmgJaA9DCH4dOGdE6fG/lIaUUpRoFUsyaBZHQKd/s9+PRzB1fZQoaAZoCWgPQwg2PL1SlmHyv5SGlFKUaBVLMmgWR0Cnf3DneSB9dX2UKGgGaAloD0MIVrd6TnqfDMCUhpRSlGgVSzJoFkdAp38vvH93r3V9lChoBmgJaA9DCPqZet0i0AnAlIaUUpRoFUsyaBZHQKd+7H/cWTJ1fZQoaAZoCWgPQwjpfeNrz6wBwJSGlFKUaBVLMmgWR0CngKINEw36dX2UKGgGaAloD0MIdlH0wMfACMCUhpRSlGgVSzJoFkdAp4BfGOuJUHV9lChoBmgJaA9DCEC/79+8eATAlIaUUpRoFUsyaBZHQKeAHfl6qsF1fZQoaAZoCWgPQwjTEcDN4uUBwJSGlFKUaBVLMmgWR0Cnf9rFwT/RdX2UKGgGaAloD0MI547+l2uxB8CUhpRSlGgVSzJoFkdAp4GcRaouPHV9lChoBmgJaA9DCKCM8WH28va/lIaUUpRoFUsyaBZHQKeBWXrMTvl1fZQoaAZoCWgPQwgydsJLcKr/v5SGlFKUaBVLMmgWR0CngRhwdbPhdX2UKGgGaAloD0MIhxqFJLO6/7+UhpRSlGgVSzJoFkdAp4DVTP0I1XV9lChoBmgJaA9DCCU8odefZAXAlIaUUpRoFUsyaBZHQKeCldD6WPd1fZQoaAZoCWgPQwjle0YiNOIGwJSGlFKUaBVLMmgWR0CnglM0gr6MdX2UKGgGaAloD0MIkuwRaoZUAsCUhpRSlGgVSzJoFkdAp4IRy2hIv3V9lChoBmgJaA9DCOwS1VsDuwDAlIaUUpRoFUsyaBZHQKeBzoX9BKN1fZQoaAZoCWgPQwiFPljGhu4FwJSGlFKUaBVLMmgWR0Cng5mxdIGydX2UKGgGaAloD0MIWJI81/fBAMCUhpRSlGgVSzJoFkdAp4NXkHUtqnV9lChoBmgJaA9DCOxsyD8zCATAlIaUUpRoFUsyaBZHQKeDFs+FDfF1fZQoaAZoCWgPQwjFHAQdrSoEwJSGlFKUaBVLMmgWR0CngtRVhkRSdX2UKGgGaAloD0MIEHf1KjJ6/L+UhpRSlGgVSzJoFkdAp4Uvww0wanV9lChoBmgJaA9DCPzepj/7UQTAlIaUUpRoFUsyaBZHQKeE7X8O09h1fZQoaAZoCWgPQwjyXyAIkKH6v5SGlFKUaBVLMmgWR0CnhK07Sy+pdX2UKGgGaAloD0MIvtnmxvQkAcCUhpRSlGgVSzJoFkdAp4Rqe7L+xXV9lChoBmgJaA9DCKciFcYWAvq/lIaUUpRoFUsyaBZHQKeHATjebd91fZQoaAZoCWgPQwgqVaLsLaXyv5SGlFKUaBVLMmgWR0Cnhr8JD3M7dX2UKGgGaAloD0MI2/0qwHfb+L+UhpRSlGgVSzJoFkdAp4Z/Olfqo3V9lChoBmgJaA9DCIz1DUxuVPe/lIaUUpRoFUsyaBZHQKeGPN/OMVF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:693c596b0e1b2e3ab40b06f1652455a338eac3e3595f44b7ffc83f42b2ef712c
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f2da7fa962d65364d3bc60b03ba1af359402bb05d2d254bf71d14639e3b4ac2
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0555308af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f055530a2d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676347191472670622, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/f7/tPjdgIr3+yxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANmXVP3cHuL5vsts/5nsHv4RzNj+ytV4/tY6lv8z0mL8cy4Y/25qWP1+aUD+2FY2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87Tt/v+0+N2Aivf7LFz8/GZE8p8WKu6I87TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]\n [ 0.46435162 -0.03964254 0.5929564 ]]", "desired_goal": "[[ 1.6671512 -0.35943195 1.7163829 ]\n [-0.5292343 0.7127001 0.86995995]\n [-1.2934176 -1.1949706 1.0530734 ]\n [ 1.1766008 0.8148555 -1.1022251 ]]", "observation": "[[ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]\n [ 0.46435162 -0.03964254 0.5929564 0.01771223 -0.00423499 0.00723989]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMjrqvQ/uDT4AIn09R32OPflnHr0hipA9fddJvXMc0LwvMr888mnMPa5I873OgAo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11436881 0.13860343 0.0618 ]\n [ 0.06957489 -0.03867337 0.07057596]\n [-0.04927777 -0.02540419 0.02333936]\n [ 0.09981145 -0.11879097 0.13525698]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ9h/nZsWAsCUhpRSlIwBbJRLMowBdJRHQKdtOT8HfMx1fZQoaAZoCWgPQwhMx5xn7IsJwJSGlFKUaBVLMmgWR0CnbPbzshPkdX2UKGgGaAloD0MIYvay7bR1FMCUhpRSlGgVSzJoFkdAp2y2vwEyL3V9lChoBmgJaA9DCKKakqzD8QDAlIaUUpRoFUsyaBZHQKdsdD4QBgh1fZQoaAZoCWgPQwheDybFx+cEwJSGlFKUaBVLMmgWR0CnbsYUnG83dX2UKGgGaAloD0MIayqLwi7K/7+UhpRSlGgVSzJoFkdAp26DzCk43nV9lChoBmgJaA9DCLqilBCsSgbAlIaUUpRoFUsyaBZHQKduQyfL9uR1fZQoaAZoCWgPQwjJc30fDpIJwJSGlFKUaBVLMmgWR0CnbgBgeA/cdX2UKGgGaAloD0MITU2CN6SRB8CUhpRSlGgVSzJoFkdAp2/qREF4cHV9lChoBmgJaA9DCJG6nX3lwf2/lIaUUpRoFUsyaBZHQKdvp6By0a91fZQoaAZoCWgPQwieRe9UwL36v5SGlFKUaBVLMmgWR0Cnb2ZMtbs4dX2UKGgGaAloD0MIchk3NdD897+UhpRSlGgVSzJoFkdAp28jOE/SpnV9lChoBmgJaA9DCPqa5bLR+QXAlIaUUpRoFUsyaBZHQKdw99GZuyh1fZQoaAZoCWgPQwiR7ucU5McKwJSGlFKUaBVLMmgWR0CncLUCaJAMdX2UKGgGaAloD0MIUkSGVbxBEMCUhpRSlGgVSzJoFkdAp3BzxiG34XV9lChoBmgJaA9DCInvxKwXYxDAlIaUUpRoFUsyaBZHQKdwMMMI/qx1fZQoaAZoCWgPQwhyhuKON/nyv5SGlFKUaBVLMmgWR0CncfbQswtbdX2UKGgGaAloD0MIAfp9/+YF+7+UhpRSlGgVSzJoFkdAp3G0FMZgonV9lChoBmgJaA9DCIOG/gkulgXAlIaUUpRoFUsyaBZHQKdxcstkFwF1fZQoaAZoCWgPQwhqM05DVAEEwJSGlFKUaBVLMmgWR0CncS+5nUUgdX2UKGgGaAloD0MIiq4LPzgfCcCUhpRSlGgVSzJoFkdAp3LwhQm/nHV9lChoBmgJaA9DCGN/2T15GP6/lIaUUpRoFUsyaBZHQKdyreQ+2Vp1fZQoaAZoCWgPQwhMxjGSPeIDwJSGlFKUaBVLMmgWR0Cncmyd4FA3dX2UKGgGaAloD0MIj8TL07mCBcCUhpRSlGgVSzJoFkdAp3IpavA443V9lChoBmgJaA9DCPiL2ZJVMQjAlIaUUpRoFUsyaBZHQKdz7SZSeiB1fZQoaAZoCWgPQwi1No3ttSADwJSGlFKUaBVLMmgWR0Cnc6o6S1VpdX2UKGgGaAloD0MIOpZ31QOmCMCUhpRSlGgVSzJoFkdAp3No3rD633V9lChoBmgJaA9DCADHnj2XKQ7AlIaUUpRoFUsyaBZHQKdzJcZ9/jN1fZQoaAZoCWgPQwgs1QW8zHD6v5SGlFKUaBVLMmgWR0CndPR3V09ydX2UKGgGaAloD0MIOQ1RhT8jB8CUhpRSlGgVSzJoFkdAp3SxjpcHGHV9lChoBmgJaA9DCIOnkCv1rPK/lIaUUpRoFUsyaBZHQKd0cGdI5HV1fZQoaAZoCWgPQwhLrfcb7Tjvv5SGlFKUaBVLMmgWR0CndC029+PSdX2UKGgGaAloD0MIFRxeEJFaCMCUhpRSlGgVSzJoFkdAp3XiYRdyDXV9lChoBmgJaA9DCAETuHU3T+y/lIaUUpRoFUsyaBZHQKd1n4Oc2BJ1fZQoaAZoCWgPQwheTZ6ymq74v5SGlFKUaBVLMmgWR0CndV5ElVtGdX2UKGgGaAloD0MIcxHfiVkv8r+UhpRSlGgVSzJoFkdAp3Ua+BYms3V9lChoBmgJaA9DCAdfmEwVDP6/lIaUUpRoFUsyaBZHQKd22TEit7t1fZQoaAZoCWgPQwj8OQX52agPwJSGlFKUaBVLMmgWR0CndpZP2wmmdX2UKGgGaAloD0MINIXOa+zS+7+UhpRSlGgVSzJoFkdAp3ZU/dIoVnV9lChoBmgJaA9DCDZbecn/ZALAlIaUUpRoFUsyaBZHQKd2EafjCHh1fZQoaAZoCWgPQwjU1R2LbbIKwJSGlFKUaBVLMmgWR0Cnd84sd1dPdX2UKGgGaAloD0MIvTlcqz2MCsCUhpRSlGgVSzJoFkdAp3eLiqABk3V9lChoBmgJaA9DCPhQoiWPJwfAlIaUUpRoFUsyaBZHQKd3Skl/pdN1fZQoaAZoCWgPQwiPOGQD6eL5v5SGlFKUaBVLMmgWR0CndwbdznzQdX2UKGgGaAloD0MIr2Ab8WQXA8CUhpRSlGgVSzJoFkdAp3jLCYTkAHV9lChoBmgJaA9DCDCCxkyiXv2/lIaUUpRoFUsyaBZHQKd4iAmzByl1fZQoaAZoCWgPQwgdy7vqATMNwJSGlFKUaBVLMmgWR0CneEbuMMqjdX2UKGgGaAloD0MID7dDw2I0CcCUhpRSlGgVSzJoFkdAp3gD06HTJHV9lChoBmgJaA9DCNNqSNxj6f2/lIaUUpRoFUsyaBZHQKd5vSGahHt1fZQoaAZoCWgPQwhCdt7GZkf8v5SGlFKUaBVLMmgWR0CneXpQDV6NdX2UKGgGaAloD0MI4Lw48dVO8b+UhpRSlGgVSzJoFkdAp3k5H7P6bnV9lChoBmgJaA9DCEXXhR+cTwPAlIaUUpRoFUsyaBZHQKd49hzeXRh1fZQoaAZoCWgPQwjBV3TrNb0AwJSGlFKUaBVLMmgWR0CnerHUc4o7dX2UKGgGaAloD0MIegCL/Poh7b+UhpRSlGgVSzJoFkdAp3pvB+F10XV9lChoBmgJaA9DCCy2SUVjbe6/lIaUUpRoFUsyaBZHQKd6Lc5bQkZ1fZQoaAZoCWgPQwhFSrN5HEb0v5SGlFKUaBVLMmgWR0CneeqGlANYdX2UKGgGaAloD0MI0/avrDSp9L+UhpRSlGgVSzJoFkdAp3uroIOYpnV9lChoBmgJaA9DCB0+6USC6fi/lIaUUpRoFUsyaBZHQKd7aOaOPvN1fZQoaAZoCWgPQwjy64fYYGEAwJSGlFKUaBVLMmgWR0CneyeQ2dd3dX2UKGgGaAloD0MIVoFaDB4GAcCUhpRSlGgVSzJoFkdAp3rkRvm5lXV9lChoBmgJaA9DCGjPZWoSvAbAlIaUUpRoFUsyaBZHQKd8ritJWeZ1fZQoaAZoCWgPQwiv0t11NqQHwJSGlFKUaBVLMmgWR0CnfGt5MURGdX2UKGgGaAloD0MIg8KgTKPpC8CUhpRSlGgVSzJoFkdAp3wqZQYUFnV9lChoBmgJaA9DCHwpPGh2HRDAlIaUUpRoFUsyaBZHQKd75yoXKr91fZQoaAZoCWgPQwjZ7bPKTCkAwJSGlFKUaBVLMmgWR0CnfbvJ7sv7dX2UKGgGaAloD0MI1IIXfQXpAcCUhpRSlGgVSzJoFkdAp315HLA573V9lChoBmgJaA9DCEBQbtv3CATAlIaUUpRoFUsyaBZHQKd9OCRwIdF1fZQoaAZoCWgPQwgqqKj6lc4EwJSGlFKUaBVLMmgWR0CnfPUfozN2dX2UKGgGaAloD0MI3j6rzJQW/b+UhpRSlGgVSzJoFkdAp36+dqcmSnV9lChoBmgJaA9DCNODglK0UgPAlIaUUpRoFUsyaBZHQKd+e4EwFkh1fZQoaAZoCWgPQwjIJ2TnbWwIwJSGlFKUaBVLMmgWR0CnfjqMm4RVdX2UKGgGaAloD0MICVOUS+MXBsCUhpRSlGgVSzJoFkdAp333Ot4iYHV9lChoBmgJaA9DCH4dOGdE6fG/lIaUUpRoFUsyaBZHQKd/s9+PRzB1fZQoaAZoCWgPQwg2PL1SlmHyv5SGlFKUaBVLMmgWR0Cnf3DneSB9dX2UKGgGaAloD0MIVrd6TnqfDMCUhpRSlGgVSzJoFkdAp38vvH93r3V9lChoBmgJaA9DCPqZet0i0AnAlIaUUpRoFUsyaBZHQKd+7H/cWTJ1fZQoaAZoCWgPQwjpfeNrz6wBwJSGlFKUaBVLMmgWR0CngKINEw36dX2UKGgGaAloD0MIdlH0wMfACMCUhpRSlGgVSzJoFkdAp4BfGOuJUHV9lChoBmgJaA9DCEC/79+8eATAlIaUUpRoFUsyaBZHQKeAHfl6qsF1fZQoaAZoCWgPQwjTEcDN4uUBwJSGlFKUaBVLMmgWR0Cnf9rFwT/RdX2UKGgGaAloD0MI547+l2uxB8CUhpRSlGgVSzJoFkdAp4GcRaouPHV9lChoBmgJaA9DCKCM8WH28va/lIaUUpRoFUsyaBZHQKeBWXrMTvl1fZQoaAZoCWgPQwgydsJLcKr/v5SGlFKUaBVLMmgWR0CngRhwdbPhdX2UKGgGaAloD0MIhxqFJLO6/7+UhpRSlGgVSzJoFkdAp4DVTP0I1XV9lChoBmgJaA9DCCU8odefZAXAlIaUUpRoFUsyaBZHQKeCldD6WPd1fZQoaAZoCWgPQwjle0YiNOIGwJSGlFKUaBVLMmgWR0CnglM0gr6MdX2UKGgGaAloD0MIkuwRaoZUAsCUhpRSlGgVSzJoFkdAp4IRy2hIv3V9lChoBmgJaA9DCOwS1VsDuwDAlIaUUpRoFUsyaBZHQKeBzoX9BKN1fZQoaAZoCWgPQwiFPljGhu4FwJSGlFKUaBVLMmgWR0Cng5mxdIGydX2UKGgGaAloD0MIWJI81/fBAMCUhpRSlGgVSzJoFkdAp4NXkHUtqnV9lChoBmgJaA9DCOxsyD8zCATAlIaUUpRoFUsyaBZHQKeDFs+FDfF1fZQoaAZoCWgPQwjFHAQdrSoEwJSGlFKUaBVLMmgWR0CngtRVhkRSdX2UKGgGaAloD0MIEHf1KjJ6/L+UhpRSlGgVSzJoFkdAp4Uvww0wanV9lChoBmgJaA9DCPzepj/7UQTAlIaUUpRoFUsyaBZHQKeE7X8O09h1fZQoaAZoCWgPQwjyXyAIkKH6v5SGlFKUaBVLMmgWR0CnhK07Sy+pdX2UKGgGaAloD0MIvtnmxvQkAcCUhpRSlGgVSzJoFkdAp4Rqe7L+xXV9lChoBmgJaA9DCKciFcYWAvq/lIaUUpRoFUsyaBZHQKeHATjebd91fZQoaAZoCWgPQwgqVaLsLaXyv5SGlFKUaBVLMmgWR0Cnhr8JD3M7dX2UKGgGaAloD0MI2/0qwHfb+L+UhpRSlGgVSzJoFkdAp4Z/Olfqo3V9lChoBmgJaA9DCIz1DUxuVPe/lIaUUpRoFUsyaBZHQKeGPN/OMVF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (636 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.350999073404819, "std_reward": 1.2638734414301624, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T04:50:21.723359"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f27174715b0e6c93bbc6b1d77d64f000402ea3abbabd2fb58d1d267ad05da559
3
+ size 3056