mixed-nlp's picture
Update README.md
82918cd verified
|
raw
history blame
105 kB
metadata
tags:
  - mteb
model-index:
  - name: mxbai-embed-2d-large-v1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 74.76119402985074
          - type: ap
            value: 37.90611182084586
          - type: f1
            value: 68.80795400445113
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.255525
          - type: ap
            value: 90.06886124154308
          - type: f1
            value: 93.24785420201029
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.162000000000006
          - type: f1
            value: 45.66989189593428
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.980000000000004
          - type: map_at_10
            value: 54.918
          - type: map_at_100
            value: 55.401
          - type: map_at_1000
            value: 55.403000000000006
          - type: map_at_3
            value: 50.249
          - type: map_at_5
            value: 53.400000000000006
          - type: mrr_at_1
            value: 38.834
          - type: mrr_at_10
            value: 55.24
          - type: mrr_at_100
            value: 55.737
          - type: mrr_at_1000
            value: 55.738
          - type: mrr_at_3
            value: 50.580999999999996
          - type: mrr_at_5
            value: 53.71
          - type: ndcg_at_1
            value: 37.980000000000004
          - type: ndcg_at_10
            value: 63.629000000000005
          - type: ndcg_at_100
            value: 65.567
          - type: ndcg_at_1000
            value: 65.61399999999999
          - type: ndcg_at_3
            value: 54.275
          - type: ndcg_at_5
            value: 59.91
          - type: precision_at_1
            value: 37.980000000000004
          - type: precision_at_10
            value: 9.110999999999999
          - type: precision_at_100
            value: 0.993
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 21.977
          - type: precision_at_5
            value: 15.903
          - type: recall_at_1
            value: 37.980000000000004
          - type: recall_at_10
            value: 91.11
          - type: recall_at_100
            value: 99.289
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 65.932
          - type: recall_at_5
            value: 79.51599999999999
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 48.28746486562395
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 42.335244985544165
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 63.771155681602096
          - type: mrr
            value: 76.55993052807459
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.76152904846916
          - type: cos_sim_spearman
            value: 88.05622328825284
          - type: euclidean_pearson
            value: 88.2821986323439
          - type: euclidean_spearman
            value: 88.05622328825284
          - type: manhattan_pearson
            value: 87.98419111117559
          - type: manhattan_spearman
            value: 87.905617446958
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 86.65259740259741
          - type: f1
            value: 86.62044951853902
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 39.7270855384167
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 36.95365397158872
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.604
          - type: map_at_10
            value: 42.126999999999995
          - type: map_at_100
            value: 43.702999999999996
          - type: map_at_1000
            value: 43.851
          - type: map_at_3
            value: 38.663
          - type: map_at_5
            value: 40.67
          - type: mrr_at_1
            value: 37.625
          - type: mrr_at_10
            value: 48.203
          - type: mrr_at_100
            value: 48.925000000000004
          - type: mrr_at_1000
            value: 48.979
          - type: mrr_at_3
            value: 45.494
          - type: mrr_at_5
            value: 47.288999999999994
          - type: ndcg_at_1
            value: 37.625
          - type: ndcg_at_10
            value: 48.649
          - type: ndcg_at_100
            value: 54.041
          - type: ndcg_at_1000
            value: 56.233999999999995
          - type: ndcg_at_3
            value: 43.704
          - type: ndcg_at_5
            value: 46.172999999999995
          - type: precision_at_1
            value: 37.625
          - type: precision_at_10
            value: 9.371
          - type: precision_at_100
            value: 1.545
          - type: precision_at_1000
            value: 0.20400000000000001
          - type: precision_at_3
            value: 21.364
          - type: precision_at_5
            value: 15.421999999999999
          - type: recall_at_1
            value: 30.604
          - type: recall_at_10
            value: 60.94199999999999
          - type: recall_at_100
            value: 82.893
          - type: recall_at_1000
            value: 96.887
          - type: recall_at_3
            value: 46.346
          - type: recall_at_5
            value: 53.495000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.959000000000003
          - type: map_at_10
            value: 40.217999999999996
          - type: map_at_100
            value: 41.337
          - type: map_at_1000
            value: 41.471999999999994
          - type: map_at_3
            value: 37.029
          - type: map_at_5
            value: 38.873000000000005
          - type: mrr_at_1
            value: 37.325
          - type: mrr_at_10
            value: 45.637
          - type: mrr_at_100
            value: 46.243
          - type: mrr_at_1000
            value: 46.297
          - type: mrr_at_3
            value: 43.323
          - type: mrr_at_5
            value: 44.734
          - type: ndcg_at_1
            value: 37.325
          - type: ndcg_at_10
            value: 45.864
          - type: ndcg_at_100
            value: 49.832
          - type: ndcg_at_1000
            value: 52.056000000000004
          - type: ndcg_at_3
            value: 41.329
          - type: ndcg_at_5
            value: 43.547000000000004
          - type: precision_at_1
            value: 37.325
          - type: precision_at_10
            value: 8.732
          - type: precision_at_100
            value: 1.369
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 19.936
          - type: precision_at_5
            value: 14.306
          - type: recall_at_1
            value: 29.959000000000003
          - type: recall_at_10
            value: 56.113
          - type: recall_at_100
            value: 73.231
          - type: recall_at_1000
            value: 87.373
          - type: recall_at_3
            value: 42.88
          - type: recall_at_5
            value: 49.004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.679
          - type: map_at_10
            value: 50.696
          - type: map_at_100
            value: 51.788000000000004
          - type: map_at_1000
            value: 51.849999999999994
          - type: map_at_3
            value: 47.414
          - type: map_at_5
            value: 49.284
          - type: mrr_at_1
            value: 44.263000000000005
          - type: mrr_at_10
            value: 54.03
          - type: mrr_at_100
            value: 54.752
          - type: mrr_at_1000
            value: 54.784
          - type: mrr_at_3
            value: 51.661
          - type: mrr_at_5
            value: 53.047
          - type: ndcg_at_1
            value: 44.263000000000005
          - type: ndcg_at_10
            value: 56.452999999999996
          - type: ndcg_at_100
            value: 60.736999999999995
          - type: ndcg_at_1000
            value: 61.982000000000006
          - type: ndcg_at_3
            value: 51.085
          - type: ndcg_at_5
            value: 53.715999999999994
          - type: precision_at_1
            value: 44.263000000000005
          - type: precision_at_10
            value: 9.129
          - type: precision_at_100
            value: 1.218
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 22.8
          - type: precision_at_5
            value: 15.674
          - type: recall_at_1
            value: 38.679
          - type: recall_at_10
            value: 70.1
          - type: recall_at_100
            value: 88.649
          - type: recall_at_1000
            value: 97.48
          - type: recall_at_3
            value: 55.757999999999996
          - type: recall_at_5
            value: 62.244
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.796999999999997
          - type: map_at_10
            value: 34.011
          - type: map_at_100
            value: 35.103
          - type: map_at_1000
            value: 35.187000000000005
          - type: map_at_3
            value: 31.218
          - type: map_at_5
            value: 32.801
          - type: mrr_at_1
            value: 28.022999999999996
          - type: mrr_at_10
            value: 36.108000000000004
          - type: mrr_at_100
            value: 37.094
          - type: mrr_at_1000
            value: 37.158
          - type: mrr_at_3
            value: 33.635
          - type: mrr_at_5
            value: 35.081
          - type: ndcg_at_1
            value: 28.022999999999996
          - type: ndcg_at_10
            value: 38.887
          - type: ndcg_at_100
            value: 44.159
          - type: ndcg_at_1000
            value: 46.300000000000004
          - type: ndcg_at_3
            value: 33.623
          - type: ndcg_at_5
            value: 36.281
          - type: precision_at_1
            value: 28.022999999999996
          - type: precision_at_10
            value: 6.010999999999999
          - type: precision_at_100
            value: 0.901
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 14.124
          - type: precision_at_5
            value: 10.034
          - type: recall_at_1
            value: 25.796999999999997
          - type: recall_at_10
            value: 51.86300000000001
          - type: recall_at_100
            value: 75.995
          - type: recall_at_1000
            value: 91.93299999999999
          - type: recall_at_3
            value: 37.882
          - type: recall_at_5
            value: 44.34
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.468000000000002
          - type: map_at_10
            value: 24.026
          - type: map_at_100
            value: 25.237
          - type: map_at_1000
            value: 25.380000000000003
          - type: map_at_3
            value: 21.342
          - type: map_at_5
            value: 22.843
          - type: mrr_at_1
            value: 19.154
          - type: mrr_at_10
            value: 28.429
          - type: mrr_at_100
            value: 29.416999999999998
          - type: mrr_at_1000
            value: 29.491
          - type: mrr_at_3
            value: 25.746000000000002
          - type: mrr_at_5
            value: 27.282
          - type: ndcg_at_1
            value: 19.154
          - type: ndcg_at_10
            value: 29.512
          - type: ndcg_at_100
            value: 35.331
          - type: ndcg_at_1000
            value: 38.435
          - type: ndcg_at_3
            value: 24.566
          - type: ndcg_at_5
            value: 26.891
          - type: precision_at_1
            value: 19.154
          - type: precision_at_10
            value: 5.647
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 12.065
          - type: precision_at_5
            value: 8.98
          - type: recall_at_1
            value: 15.468000000000002
          - type: recall_at_10
            value: 41.908
          - type: recall_at_100
            value: 67.17
          - type: recall_at_1000
            value: 89.05499999999999
          - type: recall_at_3
            value: 28.436
          - type: recall_at_5
            value: 34.278
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.116000000000003
          - type: map_at_10
            value: 39.034
          - type: map_at_100
            value: 40.461000000000006
          - type: map_at_1000
            value: 40.563
          - type: map_at_3
            value: 35.742000000000004
          - type: map_at_5
            value: 37.762
          - type: mrr_at_1
            value: 34.264
          - type: mrr_at_10
            value: 44.173
          - type: mrr_at_100
            value: 45.111000000000004
          - type: mrr_at_1000
            value: 45.149
          - type: mrr_at_3
            value: 41.626999999999995
          - type: mrr_at_5
            value: 43.234
          - type: ndcg_at_1
            value: 34.264
          - type: ndcg_at_10
            value: 45.011
          - type: ndcg_at_100
            value: 50.91
          - type: ndcg_at_1000
            value: 52.886
          - type: ndcg_at_3
            value: 39.757999999999996
          - type: ndcg_at_5
            value: 42.569
          - type: precision_at_1
            value: 34.264
          - type: precision_at_10
            value: 8.114
          - type: precision_at_100
            value: 1.2890000000000001
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_3
            value: 18.864
          - type: precision_at_5
            value: 13.628000000000002
          - type: recall_at_1
            value: 28.116000000000003
          - type: recall_at_10
            value: 57.764
          - type: recall_at_100
            value: 82.393
          - type: recall_at_1000
            value: 95.345
          - type: recall_at_3
            value: 43.35
          - type: recall_at_5
            value: 50.368
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.557
          - type: map_at_10
            value: 33.94
          - type: map_at_100
            value: 35.382000000000005
          - type: map_at_1000
            value: 35.497
          - type: map_at_3
            value: 30.635
          - type: map_at_5
            value: 32.372
          - type: mrr_at_1
            value: 29.224
          - type: mrr_at_10
            value: 39.017
          - type: mrr_at_100
            value: 39.908
          - type: mrr_at_1000
            value: 39.96
          - type: mrr_at_3
            value: 36.225
          - type: mrr_at_5
            value: 37.869
          - type: ndcg_at_1
            value: 29.224
          - type: ndcg_at_10
            value: 40.097
          - type: ndcg_at_100
            value: 46.058
          - type: ndcg_at_1000
            value: 48.309999999999995
          - type: ndcg_at_3
            value: 34.551
          - type: ndcg_at_5
            value: 36.937
          - type: precision_at_1
            value: 29.224
          - type: precision_at_10
            value: 7.6259999999999994
          - type: precision_at_100
            value: 1.226
          - type: precision_at_1000
            value: 0.161
          - type: precision_at_3
            value: 16.781
          - type: precision_at_5
            value: 12.26
          - type: recall_at_1
            value: 23.557
          - type: recall_at_10
            value: 53.46300000000001
          - type: recall_at_100
            value: 78.797
          - type: recall_at_1000
            value: 93.743
          - type: recall_at_3
            value: 37.95
          - type: recall_at_5
            value: 44.121
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.81583333333333
          - type: map_at_10
            value: 34.057833333333335
          - type: map_at_100
            value: 35.29658333333334
          - type: map_at_1000
            value: 35.418666666666674
          - type: map_at_3
            value: 31.16416666666667
          - type: map_at_5
            value: 32.797
          - type: mrr_at_1
            value: 29.40216666666667
          - type: mrr_at_10
            value: 38.11191666666667
          - type: mrr_at_100
            value: 38.983250000000005
          - type: mrr_at_1000
            value: 39.043
          - type: mrr_at_3
            value: 35.663333333333334
          - type: mrr_at_5
            value: 37.08975
          - type: ndcg_at_1
            value: 29.40216666666667
          - type: ndcg_at_10
            value: 39.462416666666655
          - type: ndcg_at_100
            value: 44.74341666666666
          - type: ndcg_at_1000
            value: 47.12283333333333
          - type: ndcg_at_3
            value: 34.57383333333334
          - type: ndcg_at_5
            value: 36.91816666666667
          - type: precision_at_1
            value: 29.40216666666667
          - type: precision_at_10
            value: 7.008416666666667
          - type: precision_at_100
            value: 1.143333333333333
          - type: precision_at_1000
            value: 0.15391666666666665
          - type: precision_at_3
            value: 16.011083333333335
          - type: precision_at_5
            value: 11.506666666666664
          - type: recall_at_1
            value: 24.81583333333333
          - type: recall_at_10
            value: 51.39391666666666
          - type: recall_at_100
            value: 74.52983333333333
          - type: recall_at_1000
            value: 91.00650000000002
          - type: recall_at_3
            value: 37.87458333333334
          - type: recall_at_5
            value: 43.865833333333335
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.04
          - type: map_at_10
            value: 30.651
          - type: map_at_100
            value: 31.561
          - type: map_at_1000
            value: 31.667
          - type: map_at_3
            value: 28.358
          - type: map_at_5
            value: 29.644
          - type: mrr_at_1
            value: 26.840000000000003
          - type: mrr_at_10
            value: 33.397
          - type: mrr_at_100
            value: 34.166999999999994
          - type: mrr_at_1000
            value: 34.252
          - type: mrr_at_3
            value: 31.339
          - type: mrr_at_5
            value: 32.451
          - type: ndcg_at_1
            value: 26.840000000000003
          - type: ndcg_at_10
            value: 34.821999999999996
          - type: ndcg_at_100
            value: 39.155
          - type: ndcg_at_1000
            value: 41.837999999999994
          - type: ndcg_at_3
            value: 30.55
          - type: ndcg_at_5
            value: 32.588
          - type: precision_at_1
            value: 26.840000000000003
          - type: precision_at_10
            value: 5.383
          - type: precision_at_100
            value: 0.827
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 12.986
          - type: precision_at_5
            value: 9.11
          - type: recall_at_1
            value: 24.04
          - type: recall_at_10
            value: 45.133
          - type: recall_at_100
            value: 64.519
          - type: recall_at_1000
            value: 84.397
          - type: recall_at_3
            value: 33.465
          - type: recall_at_5
            value: 38.504
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.744
          - type: map_at_10
            value: 22.557
          - type: map_at_100
            value: 23.705000000000002
          - type: map_at_1000
            value: 23.833
          - type: map_at_3
            value: 20.342
          - type: map_at_5
            value: 21.584
          - type: mrr_at_1
            value: 19.133
          - type: mrr_at_10
            value: 26.316
          - type: mrr_at_100
            value: 27.285999999999998
          - type: mrr_at_1000
            value: 27.367
          - type: mrr_at_3
            value: 24.214
          - type: mrr_at_5
            value: 25.419999999999998
          - type: ndcg_at_1
            value: 19.133
          - type: ndcg_at_10
            value: 27.002
          - type: ndcg_at_100
            value: 32.544000000000004
          - type: ndcg_at_1000
            value: 35.624
          - type: ndcg_at_3
            value: 23.015
          - type: ndcg_at_5
            value: 24.916
          - type: precision_at_1
            value: 19.133
          - type: precision_at_10
            value: 4.952
          - type: precision_at_100
            value: 0.918
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 10.908
          - type: precision_at_5
            value: 8.004
          - type: recall_at_1
            value: 15.744
          - type: recall_at_10
            value: 36.63
          - type: recall_at_100
            value: 61.58
          - type: recall_at_1000
            value: 83.648
          - type: recall_at_3
            value: 25.545
          - type: recall_at_5
            value: 30.392000000000003
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.944
          - type: map_at_10
            value: 33.611000000000004
          - type: map_at_100
            value: 34.737
          - type: map_at_1000
            value: 34.847
          - type: map_at_3
            value: 30.746000000000002
          - type: map_at_5
            value: 32.357
          - type: mrr_at_1
            value: 29.198
          - type: mrr_at_10
            value: 37.632
          - type: mrr_at_100
            value: 38.53
          - type: mrr_at_1000
            value: 38.59
          - type: mrr_at_3
            value: 35.292
          - type: mrr_at_5
            value: 36.519
          - type: ndcg_at_1
            value: 29.198
          - type: ndcg_at_10
            value: 38.946999999999996
          - type: ndcg_at_100
            value: 44.348
          - type: ndcg_at_1000
            value: 46.787
          - type: ndcg_at_3
            value: 33.794999999999995
          - type: ndcg_at_5
            value: 36.166
          - type: precision_at_1
            value: 29.198
          - type: precision_at_10
            value: 6.595
          - type: precision_at_100
            value: 1.055
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 15.235999999999999
          - type: precision_at_5
            value: 10.896
          - type: recall_at_1
            value: 24.944
          - type: recall_at_10
            value: 51.284
          - type: recall_at_100
            value: 75.197
          - type: recall_at_1000
            value: 92.10000000000001
          - type: recall_at_3
            value: 37.213
          - type: recall_at_5
            value: 43.129
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.979000000000003
          - type: map_at_10
            value: 31.349
          - type: map_at_100
            value: 32.969
          - type: map_at_1000
            value: 33.2
          - type: map_at_3
            value: 28.237000000000002
          - type: map_at_5
            value: 30.09
          - type: mrr_at_1
            value: 27.075
          - type: mrr_at_10
            value: 35.946
          - type: mrr_at_100
            value: 36.897000000000006
          - type: mrr_at_1000
            value: 36.951
          - type: mrr_at_3
            value: 32.971000000000004
          - type: mrr_at_5
            value: 34.868
          - type: ndcg_at_1
            value: 27.075
          - type: ndcg_at_10
            value: 37.317
          - type: ndcg_at_100
            value: 43.448
          - type: ndcg_at_1000
            value: 45.940999999999995
          - type: ndcg_at_3
            value: 32.263
          - type: ndcg_at_5
            value: 34.981
          - type: precision_at_1
            value: 27.075
          - type: precision_at_10
            value: 7.568999999999999
          - type: precision_at_100
            value: 1.5650000000000002
          - type: precision_at_1000
            value: 0.241
          - type: precision_at_3
            value: 15.547
          - type: precision_at_5
            value: 11.818
          - type: recall_at_1
            value: 21.979000000000003
          - type: recall_at_10
            value: 48.522999999999996
          - type: recall_at_100
            value: 76.51
          - type: recall_at_1000
            value: 92.168
          - type: recall_at_3
            value: 34.499
          - type: recall_at_5
            value: 41.443999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.903
          - type: map_at_10
            value: 26.473999999999997
          - type: map_at_100
            value: 27.576
          - type: map_at_1000
            value: 27.677000000000003
          - type: map_at_3
            value: 24.244
          - type: map_at_5
            value: 25.284000000000002
          - type: mrr_at_1
            value: 20.702
          - type: mrr_at_10
            value: 28.455000000000002
          - type: mrr_at_100
            value: 29.469
          - type: mrr_at_1000
            value: 29.537999999999997
          - type: mrr_at_3
            value: 26.433
          - type: mrr_at_5
            value: 27.283
          - type: ndcg_at_1
            value: 20.702
          - type: ndcg_at_10
            value: 30.988
          - type: ndcg_at_100
            value: 36.358000000000004
          - type: ndcg_at_1000
            value: 39.080999999999996
          - type: ndcg_at_3
            value: 26.647
          - type: ndcg_at_5
            value: 28.253
          - type: precision_at_1
            value: 20.702
          - type: precision_at_10
            value: 4.972
          - type: precision_at_100
            value: 0.823
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 11.522
          - type: precision_at_5
            value: 7.9479999999999995
          - type: recall_at_1
            value: 18.903
          - type: recall_at_10
            value: 43.004
          - type: recall_at_100
            value: 67.42399999999999
          - type: recall_at_1000
            value: 87.949
          - type: recall_at_3
            value: 31.171
          - type: recall_at_5
            value: 35.071000000000005
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 12.942
          - type: map_at_10
            value: 22.017999999999997
          - type: map_at_100
            value: 23.968
          - type: map_at_1000
            value: 24.169
          - type: map_at_3
            value: 18.282
          - type: map_at_5
            value: 20.191
          - type: mrr_at_1
            value: 29.121000000000002
          - type: mrr_at_10
            value: 40.897
          - type: mrr_at_100
            value: 41.787
          - type: mrr_at_1000
            value: 41.819
          - type: mrr_at_3
            value: 37.535000000000004
          - type: mrr_at_5
            value: 39.626
          - type: ndcg_at_1
            value: 29.121000000000002
          - type: ndcg_at_10
            value: 30.728
          - type: ndcg_at_100
            value: 38.231
          - type: ndcg_at_1000
            value: 41.735
          - type: ndcg_at_3
            value: 25.141000000000002
          - type: ndcg_at_5
            value: 27.093
          - type: precision_at_1
            value: 29.121000000000002
          - type: precision_at_10
            value: 9.674000000000001
          - type: precision_at_100
            value: 1.775
          - type: precision_at_1000
            value: 0.243
          - type: precision_at_3
            value: 18.826999999999998
          - type: precision_at_5
            value: 14.515
          - type: recall_at_1
            value: 12.942
          - type: recall_at_10
            value: 36.692
          - type: recall_at_100
            value: 62.688
          - type: recall_at_1000
            value: 82.203
          - type: recall_at_3
            value: 22.820999999999998
          - type: recall_at_5
            value: 28.625
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.6
          - type: map_at_10
            value: 18.672
          - type: map_at_100
            value: 27.199
          - type: map_at_1000
            value: 29.032999999999998
          - type: map_at_3
            value: 13.045000000000002
          - type: map_at_5
            value: 15.271
          - type: mrr_at_1
            value: 69
          - type: mrr_at_10
            value: 75.304
          - type: mrr_at_100
            value: 75.68
          - type: mrr_at_1000
            value: 75.688
          - type: mrr_at_3
            value: 73.708
          - type: mrr_at_5
            value: 74.333
          - type: ndcg_at_1
            value: 56.25
          - type: ndcg_at_10
            value: 40.741
          - type: ndcg_at_100
            value: 45.933
          - type: ndcg_at_1000
            value: 53.764
          - type: ndcg_at_3
            value: 44.664
          - type: ndcg_at_5
            value: 42.104
          - type: precision_at_1
            value: 69
          - type: precision_at_10
            value: 33
          - type: precision_at_100
            value: 10.75
          - type: precision_at_1000
            value: 2.1999999999999997
          - type: precision_at_3
            value: 48.167
          - type: precision_at_5
            value: 41.099999999999994
          - type: recall_at_1
            value: 8.6
          - type: recall_at_10
            value: 24.447
          - type: recall_at_100
            value: 52.697
          - type: recall_at_1000
            value: 77.717
          - type: recall_at_3
            value: 14.13
          - type: recall_at_5
            value: 17.485999999999997
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 49.32
          - type: f1
            value: 43.92815810776849
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 68.987
          - type: map_at_10
            value: 78.025
          - type: map_at_100
            value: 78.28500000000001
          - type: map_at_1000
            value: 78.3
          - type: map_at_3
            value: 76.735
          - type: map_at_5
            value: 77.558
          - type: mrr_at_1
            value: 74.482
          - type: mrr_at_10
            value: 82.673
          - type: mrr_at_100
            value: 82.799
          - type: mrr_at_1000
            value: 82.804
          - type: mrr_at_3
            value: 81.661
          - type: mrr_at_5
            value: 82.369
          - type: ndcg_at_1
            value: 74.482
          - type: ndcg_at_10
            value: 82.238
          - type: ndcg_at_100
            value: 83.245
          - type: ndcg_at_1000
            value: 83.557
          - type: ndcg_at_3
            value: 80.066
          - type: ndcg_at_5
            value: 81.316
          - type: precision_at_1
            value: 74.482
          - type: precision_at_10
            value: 10.006
          - type: precision_at_100
            value: 1.0699999999999998
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 30.808000000000003
          - type: precision_at_5
            value: 19.256
          - type: recall_at_1
            value: 68.987
          - type: recall_at_10
            value: 90.646
          - type: recall_at_100
            value: 94.85900000000001
          - type: recall_at_1000
            value: 96.979
          - type: recall_at_3
            value: 84.76599999999999
          - type: recall_at_5
            value: 87.929
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.3
          - type: map_at_10
            value: 33.499
          - type: map_at_100
            value: 35.510000000000005
          - type: map_at_1000
            value: 35.693999999999996
          - type: map_at_3
            value: 29.083
          - type: map_at_5
            value: 31.367
          - type: mrr_at_1
            value: 39.660000000000004
          - type: mrr_at_10
            value: 49.517
          - type: mrr_at_100
            value: 50.18899999999999
          - type: mrr_at_1000
            value: 50.224000000000004
          - type: mrr_at_3
            value: 46.965
          - type: mrr_at_5
            value: 48.184
          - type: ndcg_at_1
            value: 39.660000000000004
          - type: ndcg_at_10
            value: 41.75
          - type: ndcg_at_100
            value: 48.477
          - type: ndcg_at_1000
            value: 51.373999999999995
          - type: ndcg_at_3
            value: 37.532
          - type: ndcg_at_5
            value: 38.564
          - type: precision_at_1
            value: 39.660000000000004
          - type: precision_at_10
            value: 11.774999999999999
          - type: precision_at_100
            value: 1.883
          - type: precision_at_1000
            value: 0.23900000000000002
          - type: precision_at_3
            value: 25.102999999999998
          - type: precision_at_5
            value: 18.395
          - type: recall_at_1
            value: 20.3
          - type: recall_at_10
            value: 49.633
          - type: recall_at_100
            value: 73.932
          - type: recall_at_1000
            value: 91.174
          - type: recall_at_3
            value: 34.516999999999996
          - type: recall_at_5
            value: 40.217000000000006
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.699999999999996
          - type: map_at_10
            value: 54.400000000000006
          - type: map_at_100
            value: 55.45
          - type: map_at_1000
            value: 55.525999999999996
          - type: map_at_3
            value: 50.99
          - type: map_at_5
            value: 53.054
          - type: mrr_at_1
            value: 69.399
          - type: mrr_at_10
            value: 76.454
          - type: mrr_at_100
            value: 76.771
          - type: mrr_at_1000
            value: 76.783
          - type: mrr_at_3
            value: 75.179
          - type: mrr_at_5
            value: 75.978
          - type: ndcg_at_1
            value: 69.399
          - type: ndcg_at_10
            value: 63.001
          - type: ndcg_at_100
            value: 66.842
          - type: ndcg_at_1000
            value: 68.33500000000001
          - type: ndcg_at_3
            value: 57.961
          - type: ndcg_at_5
            value: 60.67700000000001
          - type: precision_at_1
            value: 69.399
          - type: precision_at_10
            value: 13.4
          - type: precision_at_100
            value: 1.6420000000000001
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 37.218
          - type: precision_at_5
            value: 24.478
          - type: recall_at_1
            value: 34.699999999999996
          - type: recall_at_10
            value: 67.002
          - type: recall_at_100
            value: 82.113
          - type: recall_at_1000
            value: 91.945
          - type: recall_at_3
            value: 55.827000000000005
          - type: recall_at_5
            value: 61.195
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 90.40480000000001
          - type: ap
            value: 86.34472513785936
          - type: f1
            value: 90.3766943422773
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 19.796
          - type: map_at_10
            value: 31.344
          - type: map_at_100
            value: 32.525999999999996
          - type: map_at_1000
            value: 32.582
          - type: map_at_3
            value: 27.514
          - type: map_at_5
            value: 29.683
          - type: mrr_at_1
            value: 20.358
          - type: mrr_at_10
            value: 31.924999999999997
          - type: mrr_at_100
            value: 33.056000000000004
          - type: mrr_at_1000
            value: 33.105000000000004
          - type: mrr_at_3
            value: 28.149
          - type: mrr_at_5
            value: 30.303
          - type: ndcg_at_1
            value: 20.372
          - type: ndcg_at_10
            value: 38.025999999999996
          - type: ndcg_at_100
            value: 43.813
          - type: ndcg_at_1000
            value: 45.21
          - type: ndcg_at_3
            value: 30.218
          - type: ndcg_at_5
            value: 34.088
          - type: precision_at_1
            value: 20.372
          - type: precision_at_10
            value: 6.123
          - type: precision_at_100
            value: 0.903
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 12.918
          - type: precision_at_5
            value: 9.702
          - type: recall_at_1
            value: 19.796
          - type: recall_at_10
            value: 58.644
          - type: recall_at_100
            value: 85.611
          - type: recall_at_1000
            value: 96.314
          - type: recall_at_3
            value: 37.419999999999995
          - type: recall_at_5
            value: 46.697
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.0984952120383
          - type: f1
            value: 92.9409029889071
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 73.24441404468764
          - type: f1
            value: 54.66568676132254
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 73.86684599865501
          - type: f1
            value: 72.16086061041996
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 78.16745124411568
          - type: f1
            value: 78.76361933295068
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.66329421728342
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 32.21637418682758
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.85308363141191
          - type: mrr
            value: 33.06713899953772
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.392
          - type: map_at_10
            value: 14.539
          - type: map_at_100
            value: 18.811
          - type: map_at_1000
            value: 20.471
          - type: map_at_3
            value: 10.26
          - type: map_at_5
            value: 12.224
          - type: mrr_at_1
            value: 46.749
          - type: mrr_at_10
            value: 55.72200000000001
          - type: mrr_at_100
            value: 56.325
          - type: mrr_at_1000
            value: 56.35
          - type: mrr_at_3
            value: 53.30200000000001
          - type: mrr_at_5
            value: 54.742000000000004
          - type: ndcg_at_1
            value: 44.891999999999996
          - type: ndcg_at_10
            value: 37.355
          - type: ndcg_at_100
            value: 35.285
          - type: ndcg_at_1000
            value: 44.246
          - type: ndcg_at_3
            value: 41.291
          - type: ndcg_at_5
            value: 39.952
          - type: precision_at_1
            value: 46.749
          - type: precision_at_10
            value: 28.111000000000004
          - type: precision_at_100
            value: 9.127
          - type: precision_at_1000
            value: 2.23
          - type: precision_at_3
            value: 38.803
          - type: precision_at_5
            value: 35.046
          - type: recall_at_1
            value: 6.392
          - type: recall_at_10
            value: 19.066
          - type: recall_at_100
            value: 37.105
          - type: recall_at_1000
            value: 69.37299999999999
          - type: recall_at_3
            value: 11.213
          - type: recall_at_5
            value: 14.648
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.387999999999998
          - type: map_at_10
            value: 47.172
          - type: map_at_100
            value: 48.158
          - type: map_at_1000
            value: 48.186
          - type: map_at_3
            value: 42.952
          - type: map_at_5
            value: 45.405
          - type: mrr_at_1
            value: 35.458
          - type: mrr_at_10
            value: 49.583
          - type: mrr_at_100
            value: 50.324999999999996
          - type: mrr_at_1000
            value: 50.344
          - type: mrr_at_3
            value: 46.195
          - type: mrr_at_5
            value: 48.258
          - type: ndcg_at_1
            value: 35.458
          - type: ndcg_at_10
            value: 54.839000000000006
          - type: ndcg_at_100
            value: 58.974000000000004
          - type: ndcg_at_1000
            value: 59.64699999999999
          - type: ndcg_at_3
            value: 47.012
          - type: ndcg_at_5
            value: 51.080999999999996
          - type: precision_at_1
            value: 35.458
          - type: precision_at_10
            value: 9.056000000000001
          - type: precision_at_100
            value: 1.137
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 21.582
          - type: precision_at_5
            value: 15.295
          - type: recall_at_1
            value: 31.387999999999998
          - type: recall_at_10
            value: 75.661
          - type: recall_at_100
            value: 93.605
          - type: recall_at_1000
            value: 98.658
          - type: recall_at_3
            value: 55.492
          - type: recall_at_5
            value: 64.85600000000001
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.547
          - type: map_at_10
            value: 84.495
          - type: map_at_100
            value: 85.14
          - type: map_at_1000
            value: 85.15599999999999
          - type: map_at_3
            value: 81.606
          - type: map_at_5
            value: 83.449
          - type: mrr_at_1
            value: 81.22
          - type: mrr_at_10
            value: 87.31
          - type: mrr_at_100
            value: 87.436
          - type: mrr_at_1000
            value: 87.437
          - type: mrr_at_3
            value: 86.363
          - type: mrr_at_5
            value: 87.06
          - type: ndcg_at_1
            value: 81.24
          - type: ndcg_at_10
            value: 88.145
          - type: ndcg_at_100
            value: 89.423
          - type: ndcg_at_1000
            value: 89.52799999999999
          - type: ndcg_at_3
            value: 85.435
          - type: ndcg_at_5
            value: 87
          - type: precision_at_1
            value: 81.24
          - type: precision_at_10
            value: 13.381000000000002
          - type: precision_at_100
            value: 1.529
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.44
          - type: precision_at_5
            value: 24.62
          - type: recall_at_1
            value: 70.547
          - type: recall_at_10
            value: 95.083
          - type: recall_at_100
            value: 99.50099999999999
          - type: recall_at_1000
            value: 99.982
          - type: recall_at_3
            value: 87.235
          - type: recall_at_5
            value: 91.701
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 57.93101384071724
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 62.46951126228829
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.018000000000001
          - type: map_at_10
            value: 13.818
          - type: map_at_100
            value: 16.346
          - type: map_at_1000
            value: 16.744999999999997
          - type: map_at_3
            value: 9.456000000000001
          - type: map_at_5
            value: 11.879000000000001
          - type: mrr_at_1
            value: 24.8
          - type: mrr_at_10
            value: 37.092000000000006
          - type: mrr_at_100
            value: 38.199
          - type: mrr_at_1000
            value: 38.243
          - type: mrr_at_3
            value: 33.517
          - type: mrr_at_5
            value: 35.692
          - type: ndcg_at_1
            value: 24.8
          - type: ndcg_at_10
            value: 22.782
          - type: ndcg_at_100
            value: 32.072
          - type: ndcg_at_1000
            value: 38.163000000000004
          - type: ndcg_at_3
            value: 21.046
          - type: ndcg_at_5
            value: 19.134
          - type: precision_at_1
            value: 24.8
          - type: precision_at_10
            value: 12
          - type: precision_at_100
            value: 2.5420000000000003
          - type: precision_at_1000
            value: 0.39899999999999997
          - type: precision_at_3
            value: 20
          - type: precision_at_5
            value: 17.4
          - type: recall_at_1
            value: 5.018000000000001
          - type: recall_at_10
            value: 24.34
          - type: recall_at_100
            value: 51.613
          - type: recall_at_1000
            value: 80.95
          - type: recall_at_3
            value: 12.153
          - type: recall_at_5
            value: 17.648
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 86.28259142800503
          - type: cos_sim_spearman
            value: 82.04792579356291
          - type: euclidean_pearson
            value: 83.7755858026306
          - type: euclidean_spearman
            value: 82.04789872846196
          - type: manhattan_pearson
            value: 83.79937122515567
          - type: manhattan_spearman
            value: 82.05076966288574
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.37773414195387
          - type: cos_sim_spearman
            value: 78.76929696642694
          - type: euclidean_pearson
            value: 85.75861298616339
          - type: euclidean_spearman
            value: 78.76607739031363
          - type: manhattan_pearson
            value: 85.74412868736295
          - type: manhattan_spearman
            value: 78.74388526796852
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 89.6176449076649
          - type: cos_sim_spearman
            value: 90.39810997063387
          - type: euclidean_pearson
            value: 89.753863994154
          - type: euclidean_spearman
            value: 90.39810989027997
          - type: manhattan_pearson
            value: 89.67750819879801
          - type: manhattan_spearman
            value: 90.3286558059104
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 87.7488246203373
          - type: cos_sim_spearman
            value: 85.44794976383963
          - type: euclidean_pearson
            value: 87.33205836313964
          - type: euclidean_spearman
            value: 85.44793954377185
          - type: manhattan_pearson
            value: 87.30760291906203
          - type: manhattan_spearman
            value: 85.4308413187653
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.6937750952719
          - type: cos_sim_spearman
            value: 90.01162604967037
          - type: euclidean_pearson
            value: 89.35321306629116
          - type: euclidean_spearman
            value: 90.01161406477627
          - type: manhattan_pearson
            value: 89.31351907042307
          - type: manhattan_spearman
            value: 89.97264644642166
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.49107564294891
          - type: cos_sim_spearman
            value: 87.42092493144571
          - type: euclidean_pearson
            value: 86.88112016705634
          - type: euclidean_spearman
            value: 87.42092430260175
          - type: manhattan_pearson
            value: 86.85846210123235
          - type: manhattan_spearman
            value: 87.40059575522972
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.71766466521638
          - type: cos_sim_spearman
            value: 88.80244555668372
          - type: euclidean_pearson
            value: 89.59428700746064
          - type: euclidean_spearman
            value: 88.80244555668372
          - type: manhattan_pearson
            value: 89.62272396580352
          - type: manhattan_spearman
            value: 88.77584531534937
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 67.7743776239708
          - type: cos_sim_spearman
            value: 68.79768249749681
          - type: euclidean_pearson
            value: 70.16430919697441
          - type: euclidean_spearman
            value: 68.79768249749681
          - type: manhattan_pearson
            value: 70.17205038967042
          - type: manhattan_spearman
            value: 68.89740094589914
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 86.9087137484716
          - type: cos_sim_spearman
            value: 89.19783009521629
          - type: euclidean_pearson
            value: 88.89888500166009
          - type: euclidean_spearman
            value: 89.19783009521629
          - type: manhattan_pearson
            value: 88.88400033783687
          - type: manhattan_spearman
            value: 89.16299162200889
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 86.9799916253683
          - type: mrr
            value: 96.0708200659181
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 59.928000000000004
          - type: map_at_10
            value: 69.56400000000001
          - type: map_at_100
            value: 70.125
          - type: map_at_1000
            value: 70.148
          - type: map_at_3
            value: 66.774
          - type: map_at_5
            value: 68.267
          - type: mrr_at_1
            value: 62.666999999999994
          - type: mrr_at_10
            value: 70.448
          - type: mrr_at_100
            value: 70.94
          - type: mrr_at_1000
            value: 70.962
          - type: mrr_at_3
            value: 68.389
          - type: mrr_at_5
            value: 69.65599999999999
          - type: ndcg_at_1
            value: 62.666999999999994
          - type: ndcg_at_10
            value: 74.117
          - type: ndcg_at_100
            value: 76.248
          - type: ndcg_at_1000
            value: 76.768
          - type: ndcg_at_3
            value: 69.358
          - type: ndcg_at_5
            value: 71.574
          - type: precision_at_1
            value: 62.666999999999994
          - type: precision_at_10
            value: 9.933
          - type: precision_at_100
            value: 1.09
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 27.222
          - type: precision_at_5
            value: 17.867
          - type: recall_at_1
            value: 59.928000000000004
          - type: recall_at_10
            value: 87.156
          - type: recall_at_100
            value: 96.167
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 74.117
          - type: recall_at_5
            value: 79.80000000000001
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.83762376237624
          - type: cos_sim_ap
            value: 96.05077689253707
          - type: cos_sim_f1
            value: 91.75879396984925
          - type: cos_sim_precision
            value: 92.22222222222223
          - type: cos_sim_recall
            value: 91.3
          - type: dot_accuracy
            value: 99.83762376237624
          - type: dot_ap
            value: 96.05082513542375
          - type: dot_f1
            value: 91.75879396984925
          - type: dot_precision
            value: 92.22222222222223
          - type: dot_recall
            value: 91.3
          - type: euclidean_accuracy
            value: 99.83762376237624
          - type: euclidean_ap
            value: 96.05077689253707
          - type: euclidean_f1
            value: 91.75879396984925
          - type: euclidean_precision
            value: 92.22222222222223
          - type: euclidean_recall
            value: 91.3
          - type: manhattan_accuracy
            value: 99.83861386138614
          - type: manhattan_ap
            value: 96.07646831090695
          - type: manhattan_f1
            value: 91.86220668996505
          - type: manhattan_precision
            value: 91.72482552342971
          - type: manhattan_recall
            value: 92
          - type: max_accuracy
            value: 99.83861386138614
          - type: max_ap
            value: 96.07646831090695
          - type: max_f1
            value: 91.86220668996505
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 66.40672513062134
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 35.31519237029376
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 53.15764586446943
          - type: mrr
            value: 53.981596426449364
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.92935724124931
          - type: cos_sim_spearman
            value: 31.54589922149803
          - type: dot_pearson
            value: 30.929365687857675
          - type: dot_spearman
            value: 31.54589922149803
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22100000000000003
          - type: map_at_10
            value: 1.791
          - type: map_at_100
            value: 9.404
          - type: map_at_1000
            value: 22.932
          - type: map_at_3
            value: 0.601
          - type: map_at_5
            value: 1.001
          - type: mrr_at_1
            value: 76
          - type: mrr_at_10
            value: 85.667
          - type: mrr_at_100
            value: 85.667
          - type: mrr_at_1000
            value: 85.667
          - type: mrr_at_3
            value: 84.667
          - type: mrr_at_5
            value: 85.667
          - type: ndcg_at_1
            value: 72
          - type: ndcg_at_10
            value: 68.637
          - type: ndcg_at_100
            value: 51.418
          - type: ndcg_at_1000
            value: 47.75
          - type: ndcg_at_3
            value: 70.765
          - type: ndcg_at_5
            value: 71.808
          - type: precision_at_1
            value: 76
          - type: precision_at_10
            value: 73.8
          - type: precision_at_100
            value: 52.68000000000001
          - type: precision_at_1000
            value: 20.9
          - type: precision_at_3
            value: 74.667
          - type: precision_at_5
            value: 78
          - type: recall_at_1
            value: 0.22100000000000003
          - type: recall_at_10
            value: 2.027
          - type: recall_at_100
            value: 12.831000000000001
          - type: recall_at_1000
            value: 44.996
          - type: recall_at_3
            value: 0.635
          - type: recall_at_5
            value: 1.097
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.289
          - type: map_at_10
            value: 10.475
          - type: map_at_100
            value: 16.993
          - type: map_at_1000
            value: 18.598
          - type: map_at_3
            value: 5.891
          - type: map_at_5
            value: 7.678999999999999
          - type: mrr_at_1
            value: 32.653
          - type: mrr_at_10
            value: 49.475
          - type: mrr_at_100
            value: 50.483
          - type: mrr_at_1000
            value: 50.499
          - type: mrr_at_3
            value: 45.918
          - type: mrr_at_5
            value: 48.469
          - type: ndcg_at_1
            value: 29.592000000000002
          - type: ndcg_at_10
            value: 25.891
          - type: ndcg_at_100
            value: 38.106
          - type: ndcg_at_1000
            value: 49.873
          - type: ndcg_at_3
            value: 29.915999999999997
          - type: ndcg_at_5
            value: 27.982000000000003
          - type: precision_at_1
            value: 32.653
          - type: precision_at_10
            value: 22.448999999999998
          - type: precision_at_100
            value: 7.837
          - type: precision_at_1000
            value: 1.5730000000000002
          - type: precision_at_3
            value: 31.293
          - type: precision_at_5
            value: 27.755000000000003
          - type: recall_at_1
            value: 2.289
          - type: recall_at_10
            value: 16.594
          - type: recall_at_100
            value: 48.619
          - type: recall_at_1000
            value: 85.467
          - type: recall_at_3
            value: 7.144
          - type: recall_at_5
            value: 10.465
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.5268
          - type: ap
            value: 14.763212211567907
          - type: f1
            value: 55.200562727472736
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 59.25297113752123
          - type: f1
            value: 59.55315247947331
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 51.47685515092062
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 86.73183525064076
          - type: cos_sim_ap
            value: 76.08498196190112
          - type: cos_sim_f1
            value: 69.4834471209584
          - type: cos_sim_precision
            value: 67.88321167883211
          - type: cos_sim_recall
            value: 71.16094986807387
          - type: dot_accuracy
            value: 86.73183525064076
          - type: dot_ap
            value: 76.08503499590553
          - type: dot_f1
            value: 69.4834471209584
          - type: dot_precision
            value: 67.88321167883211
          - type: dot_recall
            value: 71.16094986807387
          - type: euclidean_accuracy
            value: 86.73183525064076
          - type: euclidean_ap
            value: 76.08500172594562
          - type: euclidean_f1
            value: 69.4834471209584
          - type: euclidean_precision
            value: 67.88321167883211
          - type: euclidean_recall
            value: 71.16094986807387
          - type: manhattan_accuracy
            value: 86.6960720033379
          - type: manhattan_ap
            value: 76.00885156192993
          - type: manhattan_f1
            value: 69.24488725747247
          - type: manhattan_precision
            value: 68.8118811881188
          - type: manhattan_recall
            value: 69.68337730870712
          - type: max_accuracy
            value: 86.73183525064076
          - type: max_ap
            value: 76.08503499590553
          - type: max_f1
            value: 69.4834471209584
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.74529436876625
          - type: cos_sim_ap
            value: 85.53503158777171
          - type: cos_sim_f1
            value: 77.68167368965773
          - type: cos_sim_precision
            value: 74.70496232048912
          - type: cos_sim_recall
            value: 80.9054511857099
          - type: dot_accuracy
            value: 88.74529436876625
          - type: dot_ap
            value: 85.5350158446314
          - type: dot_f1
            value: 77.68167368965773
          - type: dot_precision
            value: 74.70496232048912
          - type: dot_recall
            value: 80.9054511857099
          - type: euclidean_accuracy
            value: 88.74529436876625
          - type: euclidean_ap
            value: 85.53503846009764
          - type: euclidean_f1
            value: 77.68167368965773
          - type: euclidean_precision
            value: 74.70496232048912
          - type: euclidean_recall
            value: 80.9054511857099
          - type: manhattan_accuracy
            value: 88.73753250281368
          - type: manhattan_ap
            value: 85.53197689629393
          - type: manhattan_f1
            value: 77.58753437213566
          - type: manhattan_precision
            value: 74.06033456988871
          - type: manhattan_recall
            value: 81.46750846935633
          - type: max_accuracy
            value: 88.74529436876625
          - type: max_ap
            value: 85.53503846009764
          - type: max_f1
            value: 77.68167368965773
license: apache-2.0
language:
  - en
library_name: transformers



The crispy sentence embedding family from mixedbread ai.

mxbai-embed-2d-large-v1

Quickstart

sentence-transformers

Currently, the best way to use our models is with the most recent version of sentence-transformers.

python -m pip install -U sentence-transformers
from sentence_transformers import models, SentenceTransformer
from sentence_transformers.util import cos_sim


# 1. load model with `cls` pooling
word_embedding_model = models.Transformer("mixedbread-ai/mxbai-embed-2d-large-v1")
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode="cls")
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

# 2. set adaptive layer and embedding size.
# it is recommended to set layers from 20 to 24.
new_num_layers = 22  # 1d: layer
model[0].auto_model.encoder.layer = model[0].auto_model.encoder.layer[:new_num_layers]
new_embedding_size = 768  # 2d: embedding size


# 3. encode
embeddings = model.encode(
    [
        'Who is german and likes bread?',
        'Everybody in German.'
    ]
)

# Similarity of the first sentence with the other two
similarities = cos_sim(embeddings[0, :new_embedding_size], embeddings[1, :new_embedding_size])

print('similarities:', similarities)

angle-emb

You can also use the lastest angle-emb for inference, as follows:

python -m pip install -U angle-emb
from angle_emb import AnglE
from sentence_transformers.util import cos_sim

# 1. load model
model = AnglE.from_pretrained("mixedbread-ai/mxbai-embed-2d-large-v1", pooling_strategy='cls').cuda()


# 2. set adaptive layer and embedding size.
# it is recommended to set layers from 20 to 24.
layer_index = 22  # 1d: layer
embedding_size = 768  # 2d: embedding size

# 3. encode
embeddings = model.encode([
    'Who is german and likes bread?',
    'Everybody in German.'
], layer_index=layer_index, embedding_size=embedding_size)

similarities = cos_sim(embeddings[0], embeddings[1:])
print('similarities:', similarities)

Using API

You’ll be able to use the models through our API as well. The API is coming soon and will have some exciting features. Stay tuned!