Mixtral-8x22B-v0.1 / convert.py
reach-vb's picture
reach-vb HF staff
Squashing commit
42a1ba7 verified
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import torch
from safetensors.torch import load_file
from transformers import (
MixtralConfig,
MixtralForCausalLM,
)
"""
Sample usage:
```
python src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py \
--input_dir /path/to/downloaded/mixtral/weights --model_size 7B --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import MixtralForCausalLM
model = MixtralForCausalLM.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
def write_model(model_path, input_base_path, model_size, safe_serialization=True):
os.makedirs(model_path, exist_ok=True)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = 1
# For some reason this is a string in the params.json
sliding_window = int(params["sliding_window"]) if "sliding_window" in params else None
base = params.get("rope_theta", 10000.0)
vocab_size = params["vocab_size"]
if model_size == "7B":
dim = params["hidden_size"]
max_position_embeddings = 4096 * 8
num_local_experts = params["num_local_experts"]
ffn_dim = params["intermediate_size"]
n_layers = params["num_hidden_layers"]
n_heads = params["num_attention_heads"]
n_heads_per_shard = n_heads // num_shards
dims_per_head = dim // n_heads
if "num_key_value_heads" in params:
num_key_value_heads = params["num_key_value_heads"] # for GQA / MQA
num_local_key_value_heads = num_key_value_heads // num_shards
key_value_dim = dims_per_head * num_local_key_value_heads
else: # compatibility with other checkpoints
num_key_value_heads = n_heads
num_local_key_value_heads = n_heads_per_shard
key_value_dim = dim
rms_norm_eps = params["rms_norm_eps"]
elif model_size == "22B":
dim = params["dim"]
max_position_embeddings = params["max_seq_len"]
num_local_experts = params["moe"]["num_experts"]
ffn_dim = params["hidden_dim"]
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dims_per_head = dim // n_heads
if "n_kv_heads" in params:
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
num_local_key_value_heads = num_key_value_heads // num_shards
key_value_dim = dims_per_head * num_local_key_value_heads
else: # compatibility with other checkpoints
num_key_value_heads = n_heads
num_local_key_value_heads = n_heads_per_shard
key_value_dim = dim
rms_norm_eps = params["norm_eps"]
else:
raise Exception("Illegal model size:", model_size)
# permute for sliced rotary
def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
print(f"Fetching all parameters from the checkpoint at \"{input_base_path}\"...")
# Load weights
if model_size == "7B":
loaded = [
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pt"), map_location="cpu") for i in range(8)
]
merged_state_dict = {}
for state_dict in loaded:
merged_state_dict.update(state_dict)
elif model_size == "22B":
merged_state_dict = load_file(os.path.join(input_base_path, "consolidated.safetensors"))
print("Parameters load finished.")
state_dict = {}
for layer_i in range(n_layers):
print(f"At layer {layer_i}...")
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
state_dict.update(
{
f"model.layers.{layer_i}.input_layernorm.weight": merged_state_dict[
f"layers.{layer_i}.attention_norm.weight"
].clone(),
f"model.layers.{layer_i}.post_attention_layernorm.weight": merged_state_dict[
f"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
)
state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
merged_state_dict[f"layers.{layer_i}.attention.wq.weight"]
.view(n_heads_per_shard, dims_per_head, dim)
.reshape(dim, dim)
)
state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
merged_state_dict[f"layers.{layer_i}.attention.wk.weight"]
.view(num_local_key_value_heads, dims_per_head, dim)
.reshape(key_value_dim, dim),
num_key_value_heads,
key_value_dim,
dim,
)
state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = (
merged_state_dict[f"layers.{layer_i}.attention.wv.weight"]
.view(num_local_key_value_heads, dims_per_head, dim)
.reshape(key_value_dim, dim)
)
state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = merged_state_dict[
f"layers.{layer_i}.attention.wo.weight"
]
if model_size == "7B":
w1 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w1"]
w2 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w2"]
w3 = merged_state_dict[f"layers.{layer_i}.block_sparse_moe.w3"]
experts_w1 = [
w1[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
for expert_idx in range(num_local_experts)
]
for idx, expert_block in enumerate(experts_w1):
expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w1"
state_dict[expert_key + ".weight"] = expert_block.clone()
experts_w2 = [
w2[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
for expert_idx in range(num_local_experts)
]
for idx, expert_block in enumerate(experts_w2):
expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w2"
state_dict[expert_key + ".weight"] = expert_block.T.clone().contiguous()
experts_w3 = [
w3[ffn_dim * expert_idx : ffn_dim * (expert_idx + 1), :].contiguous().clone()
for expert_idx in range(num_local_experts)
]
for idx, expert_block in enumerate(experts_w3):
expert_key = f"model.layers.{layer_i}.block_sparse_moe.experts.{idx}.w3"
state_dict[expert_key + ".weight"] = expert_block.clone()
state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
f"layers.{layer_i}.block_sparse_moe.gate.weight"
]
elif model_size == "22B":
for expert_i in range(num_local_experts):
w1 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w1.weight"]
w2 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w2.weight"]
w3 = merged_state_dict[f"layers.{layer_i}.feed_forward.experts.{expert_i}.w3.weight"]
state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w1.weight"] = w1.contiguous().clone()
state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w2.weight"] = w2.contiguous().clone()
state_dict[f"model.layers.{layer_i}.block_sparse_moe.experts.{expert_i}.w3.weight"] = w3.contiguous().clone()
state_dict[f"model.layers.{layer_i}.block_sparse_moe.gate.weight"] = merged_state_dict[
f"layers.{layer_i}.feed_forward.gate.weight"
]
state_dict.update(
{
"model.norm.weight": merged_state_dict["norm.weight"],
"model.embed_tokens.weight": merged_state_dict["tok_embeddings.weight"],
"lm_head.weight": merged_state_dict["output.weight"],
}
)
config_additional_kwargs = {}
if model_size == "22B":
config_additional_kwargs["num_experts_per_tok"] = params["moe"]["num_experts_per_tok"]
config = MixtralConfig(
hidden_size=dim,
intermediate_size=ffn_dim,
num_attention_heads=n_heads,
num_hidden_layers=n_layers,
rms_norm_eps=rms_norm_eps,
num_key_value_heads=num_key_value_heads,
vocab_size=vocab_size,
rope_theta=base,
max_position_embeddings=max_position_embeddings,
sliding_window=sliding_window,
num_local_experts=num_local_experts,
**config_additional_kwargs
)
print("Loading the checkpoint in a Mixtral model.")
with torch.device("meta"):
model = MixtralForCausalLM(config)
# Avoid saving this as part of the config.
del model.config._name_or_path
model.config.torch_dtype = torch.bfloat16
print("Saving in the Transformers format.")
model.load_state_dict(state_dict, strict=True, assign=True)
for n, p in model.named_parameters():
assert p.device.type != "meta", f"{n} has not been loaded!"
model.save_pretrained(model_path, safe_serialization=safe_serialization)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-dir",
help="Location of Mixtral weights, which contains tokenizer.model and model folders",
required=True,
)
parser.add_argument(
"--model-size",
choices=["7B", "22B"],
help="'f' models correspond to the finetuned versions, and are specific to the Mixtral official release. For more details on Mixtral, checkout the original repo: https://huggingface.co/mistral-ai",
default="7B",
)
parser.add_argument("--output-dir", help="Location to write HF model", required=True)
parser.add_argument("--safe-serialization", type=bool, default=True, help="Whether or not to save using `safetensors`.")
args = parser.parse_args()
write_model(
model_path=args.output_dir,
input_base_path=args.input_dir,
model_size=args.model_size,
safe_serialization=args.safe_serialization,
)
if __name__ == "__main__":
main()