|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-genius |
|
results: [] |
|
pipeline_tag: summarization |
|
datasets: |
|
- miscjose/genius |
|
--- |
|
|
|
# mt5-small-finetuned-genius |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8363 |
|
- Rouge1: 26.827 |
|
- Rouge2: 15.696 |
|
- Rougel: 26.773 |
|
- Rougelsum: 26.793 |
|
|
|
## Model description |
|
|
|
Please visit: [google/mt5-small](https://huggingface.co/google/mt5-small) |
|
|
|
## Intended uses & limitations |
|
|
|
- Intended Uses: Given song lyrics, generate a summary. |
|
- Limitations: Due to the nature of music, the model can generate summaries containing hate speech. |
|
|
|
## Training and evaluation data |
|
|
|
- 27.6K Training Samples |
|
- 3.45 Validation Samples |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 7.9304 | 1.0 | 863 | 3.5226 | 14.235 | 6.78 | 14.206 | 14.168 | |
|
| 3.8394 | 2.0 | 1726 | 3.0382 | 22.97 | 13.166 | 22.981 | 22.944 | |
|
| 3.3799 | 3.0 | 2589 | 2.9010 | 24.932 | 14.54 | 24.929 | 24.919 | |
|
| 3.2204 | 4.0 | 3452 | 2.8441 | 26.678 | 15.587 | 26.624 | 26.665 | |
|
| 3.1498 | 5.0 | 4315 | 2.8363 | 26.827 | 15.696 | 26.773 | 26.793 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.1 |
|
- Tokenizers 0.13.3 |
|
|