whisper-tiny-uzbek / README.md
mirodil's picture
Update README.md
52ce38d
|
raw
history blame
2.33 kB
metadata
language:
  - uz
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - audio
  - automatic-speech-recognition
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny Uzbek
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0
          type: mozilla-foundation/common_voice_13_0
          config: uz
          split: test
          args: uz
        metrics:
          - name: Wer
            type: wer
            value: 36.79056163528213
pipeline_tag: automatic-speech-recognition

Whisper Tiny Uzbek

This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2981
  • Wer Ortho: 47.7812
  • Wer: 36.7906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2929 0.8 3000 0.3281 50.8851 40.4395
0.2194 1.59 6000 0.3110 49.2325 37.9320
0.177 2.39 9000 0.3003 47.8700 36.8366
0.1574 3.18 12000 0.2997 48.2291 37.0491
0.1524 3.98 15000 0.2958 47.2395 36.4400
0.1455 4.77 18000 0.2981 47.7812 36.7906

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1