mirfan899's picture
update model card README.md
7ca79df
|
raw
history blame
3.71 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: kids_phoneme_sm_model
    results: []

kids_phoneme_sm_model

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0236
  • Cer: 0.4987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Cer
2.9442 0.74 500 4.9380 1.0
2.8667 1.48 1000 3.3662 1.0
2.8316 2.22 1500 4.4512 1.0
2.8011 2.96 2000 4.1959 1.0
2.7941 3.7 2500 3.2025 1.0
2.5078 4.44 3000 2.1864 1.0
1.8915 5.19 3500 1.6942 0.9979
1.5858 5.93 4000 1.4032 0.9707
1.3097 6.67 4500 1.1950 0.9264
1.134 7.41 5000 1.0407 0.8629
1.0054 8.15 5500 0.9647 0.8089
0.9141 8.89 6000 0.8932 0.7713
0.7902 9.63 6500 0.8355 0.7111
0.7334 10.37 7000 0.8343 0.6986
0.7315 11.11 7500 0.7893 0.6806
0.6443 11.85 8000 0.7572 0.6572
0.5798 12.59 8500 0.7501 0.6522
0.5845 13.33 9000 0.7337 0.6166
0.5366 14.07 9500 0.8090 0.6066
0.5046 14.81 10000 0.7767 0.5924
0.4569 15.56 10500 0.7593 0.6074
0.425 16.3 11000 0.7844 0.5832
0.4421 17.04 11500 0.7757 0.5836
0.3839 17.78 12000 0.8051 0.5782
0.3483 18.52 12500 0.7850 0.5715
0.3499 19.26 13000 0.8381 0.5531
0.3124 20.0 13500 0.7887 0.5527
0.2715 20.74 14000 0.8220 0.5581
0.2823 21.48 14500 0.8489 0.5426
0.257 22.22 15000 0.8818 0.5322
0.2529 22.96 15500 0.9106 0.5259
0.2219 23.7 16000 0.9197 0.5184
0.2003 24.44 16500 0.9177 0.5226
0.202 25.19 17000 0.9586 0.5167
0.1753 25.93 17500 0.9617 0.5159
0.1781 26.67 18000 0.9664 0.5063
0.1619 27.41 18500 1.0026 0.5100
0.16 28.15 19000 1.0088 0.4987
0.1471 28.89 19500 1.0207 0.5033
0.1459 29.63 20000 1.0236 0.4987

Framework versions

  • Transformers 4.30.1
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3