miosipof's picture
End of training
0d43f1d verified
metadata
library_name: peft
language:
  - it
base_model: b-brave/asr_double_training_15-10-2024_merged
tags:
  - generated_from_trainer
datasets:
  - ASR_BB_and_EC
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ASR_BB_and_EC
          type: ASR_BB_and_EC
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 35.93556381660471
            name: Wer

Whisper Medium

This model is a fine-tuned version of b-brave/asr_double_training_15-10-2024_merged on the ASR_BB_and_EC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4742
  • Wer: 35.9356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7705 0.8929 100 0.4884 36.5551
0.7194 1.7857 200 0.4838 36.6791
0.7372 2.6786 300 0.4806 36.4312
0.6967 3.5714 400 0.4782 36.3073
0.649 4.4643 500 0.4761 36.3073
0.7127 5.3571 600 0.4742 35.9356

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.2.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3