asr2_medium_v0.2 / README.md
miosipof's picture
End of training
cce5311 verified
metadata
library_name: peft
language:
  - it
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - b-brave-clean
metrics:
  - wer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: b-brave-clean
          type: b-brave-clean
          config: default
          split: test
          args: default
        metrics:
          - type: wer
            value: 56.73352435530086
            name: Wer

Whisper Medium

This model is a fine-tuned version of openai/whisper-medium on the b-brave-clean dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6333
  • Wer: 56.7335
  • Cer: 39.2960
  • Lr: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Lr
4.1253 1.0 502 3.7472 83.6676 51.0638 0.0000
1.2287 2.0 1004 1.0543 73.3524 47.8329 0.0000
0.9543 3.0 1506 0.8523 80.3725 49.8555 0.0000
0.7365 4.0 2008 0.7315 79.6562 58.7602 0.0000
0.4663 5.0 2510 0.6675 57.3066 39.2960 0.0000
0.5042 6.0 3012 0.6423 54.8711 39.2960 0.0000
0.386 7.0 3514 0.6314 55.1576 38.2453 0.0000
0.2509 7.9850 4008 0.6333 56.7335 39.2960 0.0000

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.2.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0